Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genome ; 60(5): 384-392, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28177839

RESUMO

Species of the genus Poa are taxonomically and genetically difficult to delineate owing to high and variable polyploidy, aneuploidy, and challenging breeding systems. Approximately 5% of the proposed species in Poa are considered to include or comprise diploids, but very few of those diploids are represented in seed collections. Recent phylogenetic studies of Poa have included some diploid species to elucidate Poa genome relationships. In this study, we build upon that foundation of diploid Poa relationships with additional confirmed diploid species and accessions, and with additional chloroplast sequences. We also include samples of P. pratensis and P. arachnifera to hone in on possible ancestral genomes in these two agronomic and highly polyploidy species. Relative to most species of Poa, Poa section Dioicopoa (P. ligularis, P. iridifolia, and P. arachnifera) contained relatively large chromosomes. Phylogenies were constructed using the TLF gene region and five additional chloroplast genes, and the placement of new species and accessions fit within chloroplast lineages previously reported better than by taxonomic subgenera and sections. Low-ploidy species in the P chloroplast lineage, such as P. iberica and P. remota, grouped closest to P. pratensis.


Assuntos
DNA de Cloroplastos/genética , Filogenia , Ploidias , Poa/genética , DNA de Cloroplastos/química , DNA de Cloroplastos/classificação , DNA de Plantas/química , DNA de Plantas/genética , Diploide , Geografia , Poa/classificação , Poliploidia , RNA de Transferência/genética , Análise de Sequência de DNA , Especificidade da Espécie
2.
Mol Genet Genomics ; 289(3): 383-97, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24509730

RESUMO

Rhizomes are prostrate subterranean stems that provide primitive mechanisms of vegetative dispersal, survival, and regrowth of perennial grasses and other monocots. The extent of rhizome proliferation varies greatly among grasses, being absent in cereals and other annuals, strictly confined in caespitose perennials, or highly invasive in some perennial weeds. However, genetic studies of rhizome proliferation are limited and genes controlling rhizomatous growth habit have not been elucidated. Quantitative trait loci (QTLs) controlling rhizome spreading were compared in reciprocal backcross populations derived from hybrids of rhizomatous creeping wildrye (Leymus triticoides) and caespitose basin wildrye (L. cinereus), which are perennial relatives of wheat. Two recessive QTLs were unique to the creeping wildrye backcross, one dominant QTL was unique to the basin wildrye backcross, and one additive QTL was detectable in reciprocal backcrosses with high log odds (LOD = 31.6) in the basin wildrye background. The dominant QTL located on linkage group (LG)-2a was aligned to a dominant rhizome orthogene (Rhz3) of perennial rice (Oryza longistamina) and perennial sorghum (Sorghum propinquum). Nonparametric 99 % confidence bounds of the 31.6-LOD QTL were localized to a distal 3.8-centiMorgan region of LG-6a, which corresponds to a 0.7-Mb region of Brachypodium Chromosome 3 containing 106 genes. An Aux/IAA auxin signal factor gene was located at the 31.6-LOD peak, which could explain the gravitropic and aphototropic behavior of rhizomes. Findings elucidate genetic mechanisms controlling rhizome development and architectural growth habit differences among plant species. Results have possible applications to improve perennial forage and turf grasses, extend the vegetative life cycle of annual cereals, such as wheat, or control the invasiveness of highly rhizomatous weeds such as quackgrass (Elymus repens).


Assuntos
Poaceae/crescimento & desenvolvimento , Poaceae/genética , Locos de Características Quantitativas , Rizoma/crescimento & desenvolvimento , Rizoma/genética , Clonagem Molecular , Cruzamentos Genéticos , Genes de Plantas , Ligação Genética , Genômica , Hibridização Genética , Oryza/genética , Fenótipo , Análise de Sequência de DNA , Sorghum/genética
3.
BMC Genomics ; 12: 396, 2011 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-21816110

RESUMO

BACKGROUND: Cucumber, Cucumis sativus L. (2n = 2 × = 14) and melon, C. melo L. (2n = 2 × = 24) are two important vegetable species in the genus Cucumis (family Cucurbitaceae). Both species have an Asian origin that diverged approximately nine million years ago. Cucumber is believed to have evolved from melon through chromosome fusion, but the details of this process are largely unknown. In this study, comparative genetic mapping between cucumber and melon was conducted to examine syntenic relationships of their chromosomes. RESULTS: Using two melon mapping populations, 154 and 127 cucumber SSR markers were added onto previously reported F(2)- and RIL-based genetic maps, respectively. A consensus melon linkage map was developed through map integration, which contained 401 co-dominant markers in 12 linkage groups including 199 markers derived from the cucumber genome. Syntenic relationships between melon and cucumber chromosomes were inferred based on associations between markers on the consensus melon map and cucumber draft genome scaffolds. It was determined that cucumber Chromosome 7 was syntenic to melon Chromosome I. Cucumber Chromosomes 2 and 6 each contained genomic regions that were syntenic with melon chromosomes III+V+XI and III+VIII+XI, respectively. Likewise, cucumber Chromosomes 1, 3, 4, and 5 each was syntenic with genomic regions of two melon chromosomes previously designated as II+XII, IV+VI, VII+VIII, and IX+X, respectively. However, the marker orders in several syntenic blocks on these consensus linkage maps were not co-linear suggesting that more complicated structural changes beyond simple chromosome fusion events have occurred during the evolution of cucumber. CONCLUSIONS: Comparative mapping conducted herein supported the hypothesis that cucumber chromosomes may be the result of chromosome fusion from a 24-chromosome progenitor species. Except for a possible inversion, cucumber Chromosome 7 has largely remained intact in the past nine million years since its divergence from melon. Meanwhile, many structural changes may have occurred during the evolution of the remaining six cucumber chromosomes. Further characterization of the genomic nature of Cucumis species closely related to cucumber and melon might provide a better understanding of the evolutionary history leading to modern cucumber.


Assuntos
Mapeamento Cromossômico , Cromossomos de Plantas/genética , Cucumis melo/genética , Cucumis sativus/genética , Sintenia/genética , Repetições de Microssatélites/genética
4.
BMC Plant Biol ; 11: 111, 2011 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-21797998

RESUMO

BACKGROUND: A number of molecular marker linkage maps have been developed for melon (Cucumis melo L.) over the last two decades. However, these maps were constructed using different marker sets, thus, making comparative analysis among maps difficult. In order to solve this problem, a consensus genetic map in melon was constructed using primarily highly transferable anchor markers that have broad potential use for mapping, synteny, and comparative quantitative trait loci (QTL) analysis, increasing breeding effectiveness and efficiency via marker-assisted selection (MAS). RESULTS: Under the framework of the International Cucurbit Genomics Initiative (ICuGI, http://www.icugi.org), an integrated genetic map has been constructed by merging data from eight independent mapping experiments using a genetically diverse array of parental lines. The consensus map spans 1150 cM across the 12 melon linkage groups and is composed of 1592 markers (640 SSRs, 330 SNPs, 252 AFLPs, 239 RFLPs, 89 RAPDs, 15 IMAs, 16 indels and 11 morphological traits) with a mean marker density of 0.72 cM/marker. One hundred and ninety-six of these markers (157 SSRs, 32 SNPs, 6 indels and 1 RAPD) were newly developed, mapped or provided by industry representatives as released markers, including 27 SNPs and 5 indels from genes involved in the organic acid metabolism and transport, and 58 EST-SSRs. Additionally, 85 of 822 SSR markers contributed by Syngenta Seeds were included in the integrated map. In addition, 370 QTL controlling 62 traits from 18 previously reported mapping experiments using genetically diverse parental genotypes were also integrated into the consensus map. Some QTL associated with economically important traits detected in separate studies mapped to similar genomic positions. For example, independently identified QTL controlling fruit shape were mapped on similar genomic positions, suggesting that such QTL are possibly responsible for the phenotypic variability observed for this trait in a broad array of melon germplasm. CONCLUSIONS: Even though relatively unsaturated genetic maps in a diverse set of melon market types have been published, the integrated saturated map presented herein should be considered the initial reference map for melon. Most of the mapped markers contained in the reference map are polymorphic in diverse collection of germplasm, and thus are potentially transferrable to a broad array of genetic experimentation (e.g., integration of physical and genetic maps, colinearity analysis, map-based gene cloning, epistasis dissection, and marker-assisted selection).


Assuntos
Mapeamento Cromossômico , Produtos Agrícolas/genética , Cucumis melo/genética , Locos de Características Quantitativas , Cromossomos de Plantas , Ligação Genética , Marcadores Genéticos , Genoma de Planta , Polimorfismo Genético , Análise de Sequência de DNA
5.
Theor Appl Genet ; 119(4): 621-34, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19484431

RESUMO

Theoretical studies suggest that marker-assisted selection (MAS) has case-specific advantages over phenotypic selection (PHE) for selection of quantitative traits. However, few studies have been conducted that empirically compare these selection methods in the context of a plant breeding program. For direct comparison of the effectiveness of MAS and PHE, four cucumber (Cucumis sativus L.; 2n = 2x = 14) inbred lines were intermated and then maternal bulks were used to create four base populations for recurrent mass selection. Each of these populations then underwent three cycles of PHE (open-field evaluations), MAS (genotyping at 18 marker loci), and random mating without selection. Both MAS and PHE were practiced for yield indirectly by selecting for four yield-component traits that are quantitatively inherited with 2-6 quantitative trait loci per trait. These traits were multiple lateral branching, gynoecious sex expression (gynoecy), earliness, and fruit length to diameter ratio. Both MAS and PHE were useful for multi-trait improvement, but their effectiveness depended upon the traits and populations under selection. Both MAS and PHE provided improvements in all traits under selection in at least one population, except for earliness, which did not respond to MAS. The populations with maternal parents that were inferior for a trait responded favorably to both MAS and PHE, while those with maternal parents of superior trait values either did not change or decreased during selection. Generally, PHE was most effective for gynoecy, earliness, and fruit length to diameter ratio, while MAS was most effective for multiple lateral branching and provided the only increase in yield (fruit per plant).


Assuntos
Cucumis sativus/crescimento & desenvolvimento , Cucumis sativus/genética , Seleção Genética , Mapeamento Cromossômico , Marcadores Genéticos , Locos de Características Quantitativas/genética , Característica Quantitativa Herdável , Análise de Regressão , Fatores de Tempo
6.
PLoS One ; 4(6): e5795, 2009 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-19495411

RESUMO

The Cucurbitaceae includes important crops such as cucumber, melon, watermelon, squash and pumpkin. However, few genetic and genomic resources are available for plant improvement. Some cucurbit species such as cucumber have a narrow genetic base, which impedes construction of saturated molecular linkage maps. We report herein the development of highly polymorphic simple sequence repeat (SSR) markers originated from whole genome shotgun sequencing and the subsequent construction of a high-density genetic linkage map. This map includes 995 SSRs in seven linkage groups which spans in total 573 cM, and defines approximately 680 recombination breakpoints with an average of 0.58 cM between two markers. These linkage groups were then assigned to seven corresponding chromosomes using fluorescent in situ hybridization (FISH). FISH assays also revealed a chromosomal inversion between Cucumis subspecies [C. sativus var. sativus L. and var. hardwickii (R.) Alef], which resulted in marker clustering on the genetic map. A quarter of the mapped markers showed relatively high polymorphism levels among 11 inbred lines of cucumber. Among the 995 markers, 49%, 26% and 22% were conserved in melon, watermelon and pumpkin, respectively. This map will facilitate whole genome sequencing, positional cloning, and molecular breeding in cucumber, and enable the integration of knowledge of gene and trait in cucurbits.


Assuntos
Mapeamento Cromossômico/métodos , Cucumis sativus/genética , Genoma de Planta , Citrullus/genética , Clonagem Molecular , Cucurbita/genética , Cucurbitaceae/genética , Análise Citogenética , DNA de Plantas , Genes de Plantas , Ligação Genética , Marcadores Genéticos/genética , Hibridização in Situ Fluorescente , Polimorfismo Genético , Especificidade da Espécie
7.
Environ Biosafety Res ; 7(4): 185-96, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19081007

RESUMO

Impact assessments of virus resistance transgene introgression into wild, free-living populations are important for determining whether these transgenes present a risk to agriculture or the environment. Transgenic virus-resistant Cucurbita pepo ssp. ovifera var. ovifera L. (squash) cultivars have been commercialized, and may be cultivated in close proximity to cross-compatible wild, free-living relatives (C. pepo subsp. pepo vars. ozarkana and texana). Therefore, the potential impact of these virus resistance transgenes was studied by surveying the incidence and fluctuations of virus infection (as assayed by ELISA), virus symptoms (which may not be seen in an infected plant) and population size in forty-three free-living C. pepo populations in Illinois, Missouri, Arkansas, Mississippi, Louisiana, and Texas. Ten of these populations were studied over three consecutive seasons. Depending on the year, 61% to 78% percent of the populations had at least one individual infected by at CMV, ZYMV or WMV2, but the median incidence of infection within populations was 13%. The observed infection level in free-living populations was consistent with levels defined as "low" in field plot experiments conducted by others, leading to the conclusion that transgenic virus resistance should not provide a significant fitness advantage to the free-living populations examined. Viral symptoms were detected in only 2% of plants observed, indicating that severity of viral infection was low. CMV, ZYMV, and WMV2 were not the only viruses infecting these populations, further reducing the likelihood that resistance to these viruses would release populations from constraints imposed by virus diseases.


Assuntos
Cucumovirus/isolamento & purificação , Cucurbita/virologia , Fluxo Gênico , Doenças das Plantas/virologia , Transgenes , Cucurbita/genética , Incidência , Densidade Demográfica , Estados Unidos
8.
Genome ; 50(2): 215-25, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17546086

RESUMO

Chilling injury in cucumber (Cucumis sativus L.) is conditioned by maternal factors, and the sequencing of its chloroplast genome could lead to the identification of economically important candidate genes. Complete sequencing of cucumber chloroplast (cp)DNA was facilitated by the development of 414 consensus chloroplast sequencing primers (CCSPs) from conserved cpDNA sequences of Arabidopsis (Arabidopsis thaliana L.), spinach (Spinacia oleracea L.), and tobacco (Nicotiana tabacum L.) cpDNAs, using degenerative primer technologies. Genomic sequence analysis led to the construction of 301 CCSPs and 72 cucumber chloroplast-specific sequencing primers (CSSPs), which were used for the complete sequencing of cpDNA of Gy14 (155 525 bp) and 'Chipper' (155 524 bp) cucumber lines, which are, respectively, susceptible and tolerant to chilling injury (4 degrees C for 5.5 h) in the first leaf stage. Comparative cpDNA sequence analyses revealed that 1 sequence span (located between genes trnK and rps16) and 2 nucleotides (located in genes atpB and ycf1) differed between chilling-susceptible and -tolerant lines. These sequence differences correspond to previously reported maternally inherited differences in chilling response between reciprocal F1 progeny derived from these lines. Sequence differences at these 3 cpDNA sites were also detected in a genetically diverse array of cucumber germplasm with different chilling responses. These and previously reported results suggest that 1 or several of these sequences could be responsible for the observed response to chilling injury in cucumber. The comprehensive sequencing of cpDNA of cucumber by CCSPs and CSSPs indicates that these primers have immediate applications in the analysis of cpDNAs from other dicotyledonous species and the investigation of evolutionary relationships.


Assuntos
Cloroplastos/genética , Cucumis sativus/genética , Genes de Plantas , Genoma de Planta , Sequência de Bases , Temperatura Baixa , Primers do DNA/genética , DNA de Plantas/metabolismo , Evolução Molecular , Dados de Sequência Molecular , Polimorfismo Genético , Análise de Sequência de DNA , Especificidade da Espécie
9.
Theor Appl Genet ; 112(5): 843-55, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16397790

RESUMO

Cucumber (Cucumis sativus L.; 2n = 2x = 14) has a narrow genetic base, and commercial yield of US processing cucumber has plateaued in the last 15 years. Yield may be increased by altering plant architecture to produce unique early flowering (days to flower, DTF), female (gynoecious, GYN), highly branched (multiple lateral branching, MLB), long-fruited (length:diameter ratio, L:D) cultivars with diverse plant statures. The genetic map position of QTL conditioning these quantitatively inherited yield component traits is known, and linked molecular markers may have utility in marker-assisted selection (MAS) programs to increase selection efficiency, and effectiveness. Therefore, a base population (C0), created by intermating four unique but complementary lines, was subjected to three cycles (C1-C3) of phenotypic (PHE) mass selection for DTF, GYN, MLB, and L:D. In tandem, two cycles of marker-assisted backcrossing for these traits began with selected C2 progeny (C2S) to produce families (F1[i.e., C2S x C2S], and BC(1) [i.e., F1 x C2S]) for line extraction, and for comparative analysis of gain from selection by PHE selection, and MAS. Frequencies of marker loci were used to monitor selection-dependent changes during PHE selection, and MAS. Similar gain from selection was detected as a result of PHE selection, and MAS for MLB (approximately 0.3 branches/cycle), and L:D (approximately 0.1 unit increase/cycle) with concomitant changes in frequency at linked marker loci. Although genetic gain was not realized for GYN during PHE selection, the percentage of female flowers of plants subjected to MAS was increased (5.6-9.8% per cycle) depending upon the BC1 population examined. Selection-dependent changes in frequency were also detected at marker loci linked to female sex expression during MAS. MAS operated to fix favorable alleles that were not exploited by PHE selection in this population, indicating that MAS could be applied for altering plant architecture in cucumber to improve its yield potential.


Assuntos
Cucumis sativus/genética , Seleção Genética , Biomarcadores , Mapeamento Cromossômico , Cucumis sativus/anatomia & histologia , Genética Populacional , Endogamia , Fenótipo , Locos de Características Quantitativas
10.
J Mol Evol ; 58(5): 606-14, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15170263

RESUMO

Nucleotide substitutions (i.e., point mutations) are the primary driving force in generating DNA variation upon which selection can act. Substitutions called transitions, which entail exchanges between purines (A = adenine, G = guanine) or pyrimidines (C = cytosine, T = thymine), typically outnumber transversions (e.g., exchanges between a purine and a pyrimidine) in a DNA strand. With an increasing number of plant studies revealing a transversion rather than transition bias, we chose to perform a detailed substitution analysis for the plant family Cucurbitaceae using data from several short plastid DNA sequences. We generated a phylogenetic tree for 19 taxa of the tribe Benincaseae and related genera and then scored conservative substitution changes (e.g., those not exhibiting homoplasy or reversals) from the unambiguous branches of the tree. Neither the transition nor (A+T)/(G+C) biases found in previous studies were supported by our overall data. More importantly, we found a novel and symmetrical substitution bias in which Gs had been preferentially replaced by A, As by C, Cs by T, and Ts by G, resulting in the G-->A-->C-->T-->G substitution series. Understanding this pattern will lead to new hypotheses concerning plastid evolution, which in turn will affect the choices of substitution models and other tree-building algorithms for phylogenetic analyses based on nucleotide data.


Assuntos
Cucurbitaceae/genética , Evolução Molecular , Filogenia , Plastídeos/genética , Mutação Puntual , Composição de Bases , Sequência de Bases , Dados de Sequência Molecular , Alinhamento de Sequência
11.
Theor Appl Genet ; 108(7): 1343-8, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-14666371

RESUMO

Cucumis hystrix Chakr. (HH, 2n=24), a wild relative of the cultivated cucumber, possesses several potentially valuable disease-resistance and abiotic stress-tolerance traits for cucumber ( C. sativus L., CC, 2n=14) improvement. Numerous attempts have been made to transfer desirable traits since the successful interspecific hybridization between C. hystrix and C. sativus, one of which resulted in the production of an allotriploid (HCC, 2n=26: one genome of C. hystrix and two of C. sativus). When this genotype was treated with colchicine to induce polyploidy, two monosomic alien addition lines (MAALs) (plant nos. 87 and 517: 14 CC+1 H, 2n=15) were recovered among 252 viable plants. Each of these plants was morphologically distinct from allotriploids and cultivated cucumbers. Cytogenetic and molecular marker analyses were performed to confirm the genetic constitution and further characterize these two MAALs. Chromosome counts made from at least 30 meristematic cells from each plant confirmed 15 nuclear chromosomes. In pollen mother cells of plant nos. 87 and 517, seven bivalents and one univalent were observed at diakinesis and metaphase I; the frequency of trivalent formation was low (about 4-5%). At anaphase I and II, stochastic and asymmetric division led to the formation of two gamete classes: n=7 and n=8; however, pollen fertility was relatively high. Pollen stainability in plant no. 87 was 86.7% and in plant no. 517 was 93.2%. Random amplified polymorphic DNA analysis was performed using 100 random 10-base primers. Genotypes obtained with eight primers (A-9, A-11, AH-13, AI-19, AJ-18, AJ-20, E-19, and N-20) showed a band common to the two MAAL plants and C. hystrix that was absent in C. sativus, confirming that the alien chromosomes present in the MAALs were derived from C. hystrix. Morphological differences and differences in banding patterns were also observed between plant nos. 87 and 517 after amplification with primers AI-5, AJ-13, N-12, and N-20, suggesting that these plants may contain different C. hystrix chromosomes.


Assuntos
Cromossomos de Plantas/genética , Cucumis/genética , Hibridização Genética , Meiose/genética , Poliploidia , Agricultura/métodos , Análise Citogenética , Marcadores Genéticos , Genótipo , Fenótipo , Técnica de Amplificação ao Acaso de DNA Polimórfico
12.
Theor Appl Genet ; 107(4): 757-67, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12827249

RESUMO

Although universal or consensus chloroplast primers are available, they are limited by their number and genomic distribution. Therefore, a set of consensus chloroplast primer pairs for simple sequence repeats (ccSSRs) analysis was constructed from tobacco (Nicotiana tabacum L.) chloroplast sequences. These were then tested for their general utility in the genetic analysis of a diverse array of plant taxa. In order to increase the number of ccSSRs beyond that previously reported, the target sequences for SSR motifs was set at A or T ( n >/= 7) mononucleotide repeats. Each SSR sequence motif, along with +/-200-bp flanking sequences from the first of each mononucleotide base repeat, was screened for homologies with chloroplast DNA sequences of other plant species in GenBank databases using BLAST search procedures. Twenty three putative marker loci that possessed conserved flanking sequence spans were selected for consensus primer pair construction using commercially available computer algorithms. All primer pairs produced amplicons after PCR employing genomic DNA from members of the Cucurbitaceae (six species) and Solanaceae (four species). Sixteen, 22 and 19 of the initial 23 primer pairs were successively amplified by PCR using template DNA from species of the Apiaceae (two species), Brassicaceae (one species) and Fabaceae (two species), respectively. Twenty of 23 primer pairs were also functional in three monocot species of the Liliaceae [onion (Allium cepa L.) and garlic (Allium sativum L.)], and the Poaceae [oat (Avena sativa L.)]. Sequence analysis of selected ccSSR fragments suggests that ccSSR length and sequence variation could be useful as a tool for investigating the genetic relationships within a genus or closely related taxa (i.e., tribal level). In order to provide for a marker system having significant coverage of the cucumber chloroplast genome, ccSSR primers were strategically "recombined" and named recombined consensus chloroplast primers (RCCP) for PCR analysis. Successful amplification after extended-length PCR of 16 RCCP primer pairs from cucumber ( Cucumis sativus L.) DNA suggested that the amplicons detected are representative of the cucumber chloroplast genome. These RCCP pairs, therefore, could be useful as an initial molecular tool for investigation of traits related to a chloroplast gene(s) in cucumber, and other closely related species.


Assuntos
DNA de Cloroplastos/genética , Plantas/genética , Sequência de Bases , Sequência Consenso , Cucurbitaceae/classificação , Cucurbitaceae/genética , Primers do DNA/genética , Amplificação de Genes , Variação Genética , Genoma de Planta , Repetições Minissatélites , Dados de Sequência Molecular , Plantas/classificação , Reação em Cadeia da Polimerase , Homologia de Sequência do Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...