Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Sustain Chem Eng ; 12(16): 6102-6110, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38665801

RESUMO

Zinc oxide (ZnO) is the most common curing activator used to manufacture tires. To minimize environmental impacts by decreasing the zinc content and rolling resistance of tires, ZnO nanoparticles (NPs) anchored on SiO2 NPs (ZnO@SiO2) are currently under development as new activators at the pilot scale. Here, we applied prospective life cycle assessment to predict the impacts on human health, ecosystem quality, and resource scarcity of synthesizing ZnO@SiO2 for the production of passenger car tires at an industrial scale. We found that the life cycle impacts of the synthesis are expected to decrease by 89 to 96% between the pilot and industrial scale. The largest contributors to the synthesis of ZnO@SiO2 were electricity consumption and waste treatment of the solvent. Using the new activator for tire production led to potential reductions of 9 to 12% in life cycle impacts compared to tires that are currently in use. Those reductions were due to the expected decrease in rolling resistance, leading to lower fuel consumption, which outweighed the additional environmental impacts of the synthesis, as well as the potential decrease in lifetime. Our work highlights an opportunity for manufacturers to mitigate their impacts over the full life cycle of the tire.

2.
ACS Appl Mater Interfaces ; 10(16): 14183-14192, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29582985

RESUMO

Nanostructured surfaces are of great importance in a very wide range of fields. They can be obtained by imprint or deposition techniques. However, these are usually sophisticated to perform. Generally, it is not easy to equip an object/product with a nanostructure after manufacturing. Yet, it would be very beneficial to achieve a modification of an arbitrary surface with a nanostructure of choice at a later stage by an approach that is simple to perform without the need of sophisticated equipment or excessive treatment by physicochemical methods. Herein, such a process is reported, which combines two "old-fashioned" techniques, namely, sandblasting and rubber-stamping, and translates them to the "nanoworld". By creating core-satellite supraparticles via spray-drying, a ballistic core-satellite stamp particle system is obtained, which can be used to easily transfer a wide range of nanoparticles to a great variety of surfaces to equip these with a nanostructure and subsequently advanced properties. These include water-repellant, antifouling, or antidust surfaces. Moreover, it is also demonstrated that the approach can be used to manufacture well-defined nanoimprinted surfaces. Such surfaces showed an improved spreading behavior for aliphatic alcohols, thus making such surfaces, for instance, very susceptible for disinfectants. All in all, the simple technique described herein has a great potential for creating nanostructured surfaces on nearly any surface.

3.
J Colloid Interface Sci ; 505: 605-614, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28651200

RESUMO

Surface modified superparamagnetic iron oxide nanoparticles are assembled into nanostructured micro-raspberry particles via spray drying. The micro-raspberry powder is readily redispersed to individual nanoparticles or nanostructured sub-units, depending on the initially adjusted nanoparticle modification. In this work, it is demonstrated how the technique of magnetic zero-field-cooled/field-cooled (ZFC/FC) measurements can be used to judge the degree of agglomeration, i.e. the extent of hard-agglomerates and soft-agglomerates in a system and predict the redispersibility of the powder particles. Furthermore, the uniformity of surface modification of the individual nanoparticles can be judged via this method. In addition, the technique can be applied to characterise complex nanostructured particle systems composed of iron oxide nanoparticles mixed with another type of nanoparticulate building-block. Thus, this work shows that magnetic measurement techniques are a promising approach to characterise agglomeration states of nanoparticles, their degree of surface modification and their distribution in complex particle and composite systems.

4.
J Colloid Interface Sci ; 490: 401-409, 2017 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-27914339

RESUMO

Despite immense progress in nanoscience and technology, one of the yet unsolved challenges is the redispersion of nanoparticles from dry powders back to the individual, primary particles. Herein, an easy to handle powder consisting of nanostructured micron sized raspberry-like particles is presented. These nanostructured micro-raspberries are composed of individual nanoparticles which are equipped with molecules that introduce a separating effect or "spring" functionality. Thereby, a powder system is obtained that allows for an easy and complete redispersibility of the agglomerates down to the level of individual nanoparticles in solvents and polymers. The mechanism of redispersibility involves mechanic stimuli/force as well as solvent like disintegration aspects ("like dissolves like" effect). Furthermore, by tailoring the degree of spacer-equipped particles, the bursting behavior can also be tuned, yielding different redispersion degrees. The redispersibility of the nanostructured micro-raspberries is demonstrated in solvents and silicone-based nanocomposites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...