Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 35(19)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38316054

RESUMO

We demonstrate the selective area growth of InGaAs nanowires (NWs) on GaAs (111)B substrates using hydride vapor phase epitaxy (HVPE). A high growth rate of more than 50µm h-1and high aspect ratio NWs were obtained. Composition along the NWs was investigated by energy dispersive x-ray spectroscopy giving an average indium composition of 84%. This is consistent with the composition of 78% estimated from the photoluminescence spectrum of the NWs. Crystal structure analysis of the NWs by transmission electron microscopy indicated random stacking faults related to zinc-blende/wurtzite polytypism. This work demonstrates the ability of HVPE for growing high aspect ratio InGaAs NW arrays.

2.
Nano Lett ; 21(23): 9922-9929, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34788993

RESUMO

Integration of high-quality semiconductor-superconductor devices into scalable and complementary metal-oxide-semiconductor compatible architectures remains an outstanding challenge, currently hindering their practical implementation. Here, we demonstrate growth of InAs nanowires monolithically integrated on Si inside lateral cavities containing superconducting TiN elements. This technique allows growth of hybrid devices characterized by sharp semiconductor-superconductor interfaces and with alignment along arbitrary crystallographic directions. Electrical characterization at low temperature reveals proximity induced superconductivity in InAs via a transparent interface.

3.
Nanotechnology ; 32(7): 075605, 2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33252055

RESUMO

Metastable wurtzite crystal phases of conventional semiconductors comprise enormous potential for high-performance electro-optical devices, owed to their extended tunable direct band gap range. However, synthesizing these materials in good quality and beyond nanowire size constraints has remained elusive. In this work, the epitaxy of wurtzite InP microdisks and related geometries on insulator for advanced optical applications is explored. This is achieved by an elaborate combination of selective area growth of fins and a zipper-induced epitaxial lateral overgrowth, which enables co-integration of diversely shaped crystals at precise position. The grown material possesses high phase purity and excellent optical quality characterized by STEM and µ-PL. Optically pumped lasing at room temperature is achieved in microdisks with a lasing threshold of 365 µJ cm-2. Our platform could provide novel geometries for photonic applications.

4.
Nanoscale ; 12(40): 20590-20597, 2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33030483

RESUMO

The thermoelectric properties of a nanoscale germanium segment connected by aluminium nanowires are studied using scanning thermal microscopy. The germanium segment of 168 nm length features atomically sharp interfaces to the aluminium wires and is surrounded by an Al2O3 shell. The temperature distribution along the self-heated nanowire is measured as a function of the applied electrical current, for both Joule and Peltier effects. An analysis is developed that is able to extract the thermal and thermoelectric properties including thermal conductivity, the thermal boundary resistance to the substrate and the Peltier coefficient from a single measurement. Our investigations demonstrate the potential of quantitative measurements of temperature around self-heated devices and structures down to the scattering length of heat carriers.

5.
J Phys Chem C Nanomater Interfaces ; 124(36): 19858-19863, 2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32952775

RESUMO

The performance of nanoscale electronic and photonic devices critically depends on the size and geometry and may significantly differ from those of their bulk counterparts. Along with confinement effects, the inherently high surface-to-volume ratio of nanostructures causes their properties to strongly depend on the surface. With a high and almost symmetric electron and hole mobility, Ge is considered to be a key material extending device performances beyond the limits imposed by miniaturization. Nevertheless, the deleterious effects of charge trapping are still a severe limiting factor for applications of Ge-based nanoscale devices. In this work, we show exemplarily for Ge nanowires that controlling the surface trap population by electrostatic gating can be utilized for effective surface doping. The reproducible transition from hole- to electron-dominated transport is clearly demonstrated by the observation of electron-driven negative differential resistance and provides a significant step towards a better understanding of charge-trapping-induced transport in Ge nanostructures.

6.
Nano Lett ; 20(1): 686-693, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31834808

RESUMO

Metastable crystal phases of abundant semiconductors such as III-Vs, Si, or Ge comprise enormous potential to address current limitations in green light-emitting electrical diodes (LEDs) and group IV photonics. At the same time, these nonconventional polytypes benefit from the chemical similarity to their stable counterparts, which enables the reuse of established processing technology. One of the main challenges is the very limited availability and the small crystal sizes that have been obtained so far. In this work, we explore the limitations of wurtzite (WZ) film epitaxy on the example of InP. We develop a novel method to switch and maintain a metastable phase during a metal-organic vapor phase epitaxy process based on epitaxial lateral overgrowth and compare it with standard selective area epitaxy techniques. We achieve unprecedented large WZ layer dimensions exceeding 100 µm2 and prove their phase purity both by optical as well as structural characterization. On the basis of our observations, we further develop a nucleation-based model and argue on a fundamental size limitation of WZ film growth. Our findings may pave the way toward crystal phase engineered LEDs for highly efficient lighting and display applications.

7.
Nano Lett ; 18(12): 7856-7862, 2018 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-30427685

RESUMO

Recent research on nanowires (NWs) demonstrated the ability of III-V semiconductors to adopt a different crystallographic phase when they are grown as nanostructures, giving rise to a novel class of materials with unique properties. Controlling the crystal structure however remains difficult and the geometrical constraints of NWs cause integration challenges for advanced devices. Here, we report for the first time on the phase-controlled growth of micron-sized planar InP films by selecting confined growth planes during template-assisted selective epitaxy. We demonstrate this by varying the orientation of predefined templates, which results in concurrent formation of zinc-blende (ZB) and wurtzite (WZ) material exhibiting phase purities of 100% and 97%, respectively. Optical characterization revealed a 70 meV higher band gap and a 2.5× lower lifetime for WZ InP in comparison to its natural ZB phase. Further, a model for the transition of the crystal structure is presented based on the observed growth facets and the bonding configuration of InP surfaces.

8.
Nano Lett ; 18(8): 5030-5035, 2018 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-29995430

RESUMO

We report an experimental study on quasi-one-dimensional Al-Ge-Al nanowire (NW) heterostructures featuring unmatched photoconductive gains exceeding 107 and responsivities as high as 10 A/µW in the visible wavelength regime. Our observations are attributed to the presence of GeO x related hole-trapping states at the NW surface and can be described by a photogating effect in accordance with previous studies on low-dimensional nanostructures. Utilizing an ultrascaled photodetector device operating in the quantum ballistic transport regime at room temperature we demonstrate for the first time that individual current channels can be addressed directly by laser irradiation. The resulting quantization of the photocurrent represents the ultimate limit of photodetectors, allowing for advanced concepts including highly resolved imaging, light effect transistors and single photon detectors with practically zero off-state current.

9.
Nano Lett ; 17(8): 4556-4561, 2017 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-28735546

RESUMO

Conductance quantization at room temperature is a key requirement for the utilizing of ballistic transport for, e.g., high-performance, low-power dissipating transistors operating at the upper limit of "on"-state conductance or multivalued logic gates. So far, studying conductance quantization has been restricted to high-mobility materials at ultralow temperatures and requires sophisticated nanostructure formation techniques and precise lithography for contact formation. Utilizing a thermally induced exchange reaction between single-crystalline Ge nanowires and Al pads, we achieved monolithic Al-Ge-Al NW heterostructures with ultrasmall Ge segments contacted by self-aligned quasi one-dimensional crystalline Al leads. By integration in electrostatically modulated back-gated field-effect transistors, we demonstrate the first experimental observation of room temperature quantum ballistic transport in Ge, favorable for integration in complementary metal-oxide-semiconductor platform technology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...