Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(22)2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37999295

RESUMO

Magnetic nanoparticles (MPs) are emerging as powerful and versatile tools for biotechnology, including cancer research and theranostic applications. Stem cell-mediated magnetic particle delivery has been previously recognized as a modality to target sites of malignancies. Here, we propose the use of adipose-derived mesenchymal cells (ADSC) for the targeted delivery of Fe-Cr-Nb-B magnetic particles to human osteosarcoma (HOS) cells and magneto-mechanical actuation (MMA) for targeting and destroying HOS cells. We show that MPs are easily incorporated by ADSCs and HOS cells, as confirmed by TEM images and a ferrozine assay. MP-loaded ADSCs display increased motility towards tumor cells compared with their unloaded counterparts. MMA of MP-loaded ADSCs induces HOS destruction, as confirmed by the MTT and live/dead assays. MMA enables the release of the MPs towards cancer cells, producing a significant decrease (about 80%) in HOS viability immediately after application. In contrast, normal human dermal fibroblasts' (NHDFs) viability exposed to similar conditions remains high, showing a differential behavior of normal and malignant cells to MP load and MMA exposure. Taken together, the method could derive successful strategies for in vivo applications in targeting and destroying malignant cells while protecting normal cells.

2.
Int J Mol Sci ; 24(15)2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37569290

RESUMO

(1) Osteoarthritis (OA) is a progressive joint degenerative disease that currently has no cure. Limitations in the development of innovative disease modifying therapies are related to the complexity of the underlying pathogenic mechanisms. In addition, there is the unmet need for efficient drug delivery methods. Magnetic nanoparticles (MNPs) have been proposed as an efficient modality for the delivery of bioactive molecules within OA joints, limiting the side effects associated with systemic delivery. We previously demonstrated MNP's role in increasing cell proliferation and chondrogenesis. In the design of intra-articular therapies for OA, the combined NE-MNP delivery system could provide increased stability and biological effect. (2) Proprietary Fe3O4 MNPs formulated as oil-in-water (O/W) magneto nanoemulsions (MNEs) containing ascorbic acid and dexamethasone were tested for size, stability, magnetic properties, and in vitro biocompatibility with human primary adipose mesenchymal cells (ADSC), cell mobility, and chondrogenesis. In vivo biocompatibility was tested after systemic administration in mice. (3) We report high MNE colloidal stability, magnetic properties, and excellent in vitro and in vivo biocompatibility. By increasing ADSC migration potential and chondrogenesis, MNE carrying dexamethasone and ascorbic acid could reduce OA symptoms while protecting the cartilage layer.


Assuntos
Cartilagem Articular , Osteoartrite , Humanos , Camundongos , Animais , Ácido Ascórbico/farmacologia , Ácido Ascórbico/uso terapêutico , Cartilagem , Osteoartrite/patologia , Dexametasona/farmacologia , Dexametasona/uso terapêutico , Fenômenos Magnéticos , Condrogênese , Cartilagem Articular/patologia
3.
ACS Omega ; 8(26): 23953-23963, 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37426224

RESUMO

Magnetic nanoparticles (MNPs) are intensely scrutinized for applications in emerging biomedical fields. Their potential use for drug delivery, tracking, and targeting agents or for cell handling is tested for regenerative medicine and tissue engineering applications. The large majority of MNPs tested for biomedical use are coated with different lipids and natural or synthetic polymers in order to decrease their degradation process and to increase the ability to transport drugs or bioactive molecules. Our previous studies highlighted the fact that the as-prepared MNP-loaded cells can display increased resistance to culture-induced senescence as well as ability to target pathological tissues; however, this effect tends to be dependent on the cell type. Here, we assessed comparatively the effect of two types of commonly used lipid coatings, oleic acid (OA) and palmitic acid (PA), on normal human dermal fibroblasts and adipose-derived mesenchymal cells with culture-induced senescence and cell motility in vitro. OA and PA coatings improved MNPs stability and dispersibility. We found good viability for cells loaded with all types of MNPs; however, a significant increase was obtained with the as-prepared MNPs and OA-MNPs. The coating decreases iron uptake in both cell types. Fibroblasts (Fb) integrate MNPs at a slower rate compared to adipose-derived mesenchymal stem cells (ADSCs). The as-prepared MNPs induced a significant decrease in beta-galactosidase (B-Gal) activity with a nonsignificant one observed for OA-MNPs and PA-MNPs in ADSCs and Fb. The as-prepared MNPs significantly decrease senescence-associated B-Gal enzymatic activity in ADSCs but not in Fb. Remarkably, a significant increase in cell mobility could be detected in ADSCs loaded with OA-MNPscompared to controls. The OA-MNPs uptake significantly increases ADSCs mobility in a wound healing model in vitro compared to nonloaded counterparts, while these observations need to be validated in vivo. The present findings provide evidence that support applications of OA-MNPs in wound healing and cell therapy involving reparative processes as well as organ and tissue targeting.

4.
Front Bioeng Biotechnol ; 9: 737132, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34733830

RESUMO

Purpose: Iron oxide based magnetic nanoparticles (MNP) are versatile tools in biology and medicine. Adipose derived mesenchymal stem cells (ADSC) and Wharton Jelly mesenchymal stem cells (WJMSC) are currently tested in different strategies for regenerative regenerative medicine (RM) purposes. Their superiority compared to other mesenchymal stem cell consists in larger availability, and superior proliferative and differentiation potential. Magnetic field (MF) exposure of MNP-loaded ADSC has been proposed as a method to deliver mechanical stimulation for increasing conversion to musculoskeletal lineages. In this study, we investigated comparatively chondrogenic conversion of ADSC-MNP and WJMSC with or without MF exposure in order to identify the most appropriate cell source and differentiation protocol for future cartilage engineering strategies. Methods: Human primary ADSC and WJMSC from various donors were loaded with proprietary uncoated MNP. The in vitro effect on proliferation and cellular senescence (beta galactosidase assay) in long term culture was assessed. In vitro chondrogenic differentiation in pellet culture system, with or without MF exposure, was assessed using pellet histology (Safranin O staining) as well as quantitative evaluation of glycosaminoglycan (GAG) deposition per cell. Results: ADSC-MNP complexes displayed superior proliferative capability and decreased senescence after long term (28 days) culture in vitro compared to non-loaded ADSC and to WJMSC-MNP. Significant increase in chondrogenesis conversion in terms of GAG/cell ratio could be observed in ADSC-MNP. MF exposure increased glycosaminoglycan deposition in MNP-loaded ADSC, but not in WJMSC. Conclusion: ADSC-MNP display decreased cellular senescence and superior chondrogenic capability in vitro compared to non-loaded cells as well as to WJMSC-MNP. MF exposure further increases ADSC-MNP chondrogenesis in ADSC, but not in WJMSC. Loading ADSC with MNP can derive a successful procedure for obtaining improved chondrogenesis in ADSC. Further in vivo studies are needed to confirm the utility of ADSC-MNP complexes for cartilage engineering.

5.
J Biomed Mater Res B Appl Biomater ; 109(5): 630-642, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32940420

RESUMO

Magnetic nanoparticles (MNP) are intensely scrutinized for biomedical applications due to their excellent biocompatibility and adjustable magnetic field (MF) responsiveness. Three-dimensional spheroid culture of ADSC improves stem cell proliferation and differentiation, increasing their potential for clinical applications. In this study we aimed to detect if MF levitated culture of ADSC loaded with proprietary MNP maintain the properties of ADSC and improve their performances. Levitated ADSC-MNP formed aggregates with increased volume and reduced number compared to nonlevitated ones. ADSC-MNP from levitated spheroid displayed higher viability, proliferation and mobility compared to nonlevitated and 2D culture. Levitated and nonlevitated ADSC-MNP spheroids underwent three lineage differentiation, demonstrating preserved ADSC stemness. Quantitative osteogenesis showed similar values in MNP-loaded levitated and nonlevitated spheroids. Significant increases in adipogenic conversion was observed for all 3D formulation. Chondrogenic conversion in levitated and nonlevitated spheroids produced comparable ratio glucosaminoglycan (GAG)/DNA. Increased chondrogenesis could be observed for ADSC-MNP in both levitated and nonlevitated condition. Taken together, ADSC-MNP levitated spheroids retain stemness and display superior cell viability and migratory capabilities. Furthermore, the method consistently increases spheroid maneuverability, potentially facilitating large scale manufacturing and automation. Levitated spheroid culture of ADSC-MNP can be further tested for various application in regenerative medicine and organ modeling.


Assuntos
Adipócitos/citologia , Tecido Adiposo/fisiologia , Nanopartículas de Magnetita/química , Células-Tronco Mesenquimais/citologia , Esferoides Celulares/citologia , Adipogenia , Diferenciação Celular , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Condrócitos/citologia , Condrogênese , Coloides/química , Compostos Férricos/química , Humanos , Microscopia Eletrônica de Transmissão , Osteogênese , Fenótipo , Medicina Regenerativa
6.
Mater Sci Eng C Mater Biol Appl ; 117: 111288, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32919649

RESUMO

This work addresses current direction of the nanoparticles-based systems intended for cancer therapy by developing a newly-formulated innovative chemically-engineered anti-tumor composite consisting in a magnetic, fluorescent, lipophilic, and biologically-active carbon heterostructure capable by itself or through coupling with a chemotherapeutic agent to selectively induce tumor cell death. The anti-tumor compound was synthesized through a modified sol-gel method by addition of a low-cost molecule with recently proven anti-tumor properties which was combusted and flash-cooled along with magnetic iron oxides precursors at 250 °C. The synthesized compound consisted in carbon dots, graphene and hematite nanoparticles which endowed the composite with unique simultaneous fluorescence, magnetic and anti-tumor properties. The in-vitro cytotoxicity performed on tumor cells (human osteosarcoma) and normal cells (fibroblasts) showed a selective cytotoxic effect induced after 24 h of treatment by the drug-free composite, leading to a cell death of 37%, for a composite concentration of 0.01 mg/mL per 104 tumor cells, whereas the composite loaded with an antitumor drug (mitoxantrone) boosted the cell death effect to 47% for similar exposure conditions. The method shows high potential as it boosts drug transfer within tumor cells. Different antitumor drugs already in clinical use can be used following their separate or in-cocktail controlled combustion.


Assuntos
Antineoplásicos , Nanopartículas , Antineoplásicos/farmacologia , Carbono , Humanos , Fenômenos Magnéticos , Magnetismo
7.
Mater Sci Eng C Mater Biol Appl ; 109: 110652, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32228923

RESUMO

Magnetic nanoparticles (MNPs) are versatile tools for various applications in biotechnology and nanomedicine. MNPs-mediated cell tracking, targeting and imaging are increasingly studied for regenerative medicine applications in cell therapy and tissue engineering. Mechanical stimulation influences mesenchymal stem cell differentiation. Here we show that MNPs-mediated magneto-mechanical stimulation of human primary adipose derived stem cells (ADSCs) exposed to variable magnetic field (MF) influences their adipogenic and osteogenic differentiation. ADSCs loaded with biocompatible magnetite nanoparticles of 6.6 nm, and with an average load of 21 picograms iron/cell were exposed to variable low intensity (0.5 mT - LMF) and higher intensity magnetic fields (14.7 and 21.6 mT - HMF). Type, duration, intensity and frequency of MF differently affect differentiation. Short time (2 days) intermittent exposure to LMF increases adipogenesis while longer (7 days) intermittent as well as continuous exposure favors osteogenesis. HMF (21.6 mT) short time intermittent exposure favors osteogenesis. Different exposure protocols can be used to increase differentiation dependently on expected results. Magnetic remotely-actuated MNPs up-taken by ADSCs promotes the shift towards osteoblastic lineage. ADSCs-MNPs under MF exposure could be used for enabling osteoblastic conversion during cell therapy for systemic osteoporosis. Current results enable further in vivo studies investigating the role of remotely-controlled magnetically actuated ADSCs-MNPs for the treatment of osteoporosis.


Assuntos
Tecido Adiposo/metabolismo , Diferenciação Celular , Campos Magnéticos , Nanopartículas Magnéticas de Óxido de Ferro/química , Osteogênese , Células-Tronco/metabolismo , Tecido Adiposo/citologia , Humanos , Células-Tronco/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...