Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38730901

RESUMO

This paper presents the results of research conducted in the field of the technology of surface hardening of castings from unalloyed and low-alloy nodular cast iron using the laser remelting method. The range of studies included macro- and microhardness measurements using Rockwell and Vickers methods as well as metallographic microscopic examinations using a scanning electron microscope. Moreover, abrasive wear resistance tests were performed using the pin-on-disk method in the friction pair of nodular cast iron-SiC abrasive paper and the reciprocating method in the friction pair of nodular cast iron-unalloyed steel. Analysis of the test results shows that the casting surface layer remelting by laser for unalloyed nodular cast iron results in a greater improvement in its resistance to abrasive wear in the metal-mineral system, as compared to low-alloy cast iron. Additionally, carrying out the laser hardening treatment of the surface layer made of the tested grades of nodular cast iron is justified only if the tribological system of the cooperating working parts and allowable dimensional changes during their operation are known.

2.
Materials (Basel) ; 15(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36363270

RESUMO

Grain refiner particles, which are intended to induce the formation of fine equiaxed grain structure during the solidification of aluminum alloys, are prone to settling during the holding of the liquid metal, which phenomenon can affect not only the grain size but the spatial distribution of the double oxide films in the melt. In this study, the settling of Al3Ti inoculant particles, as well as its effects on melt quality and grain refinement, were studied. During the experiments, the Ti-concentration of a liquid Al-Si-Mg-Cu alloy was increased to 0.3 wt.% by the addition of Al-10%Ti master alloy at different melt temperatures. Particle settling and grain size evolution were studied by quantitative metallography, while the interactions of grain refiners and bifilms were investigated by scanning electron microscopy (SEM). The evolution of melt quality was assessed by the computed tomographic (CT) analysis of reduced pressure test (RPT) samples. It was found that effective grain refinement was only realized when the introduced blocky Al3Ti particles were dissolved and re-precipitated in the form of (Al,Si)3Ti at a lower temperature. Without dissolving at higher holding temperatures, Al3Ti particle settling has taken place within 10 min. The settling of (Al,Si)3Ti particles improved melt quality by the aided sedimentation of bifilms in the melt.

3.
Materials (Basel) ; 15(9)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35591558

RESUMO

The resistance of cast iron to chemical and electrochemical corrosion depends on the exposure conditions, chemical composition and the distribution of alloying elements in the microstructure. The article presents an attempt to describe the formation of a corrosion layer under controlled chemical corrosion conditions for SiMo ductile iron. In the experiment, a (HT-HRD) chamber for heating the samples with a controlled atmosphere was used, at the same time providing the possibility of testing the sample surface using the XRD method. The analysis was both qualitative and quantitative. It allowed us to capture the sequence of the oxide layer growth on the tested samples. The beneficial effect of molybdenum on the corrosion resistance of SiMo cast iron has been proven. For all cases under analysis, the phenomenon of an increase in the share of hematite (Fe2O3) and magnetite (Fe3O4) was observed in the subsequent sample heating cycles. It turned out that the addition of molybdenum helps to create a tight oxide coating that inhibits the further growth of corrosion processes. Increasing the share of molybdenum in the alloy also reduces the thickness of the oxide layer.

4.
Materials (Basel) ; 14(11)2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-34199751

RESUMO

Continuous improvement in the quality of castings is especially important since a cast without defects is a more competitive product due to its longer lifecycle and cheaper operation. Producing quality castings requires comprehensive knowledge of their production, crystallization process, and chemical composition. The crystallization of alloyed ductile iron (without the addition of magnesium) with oxide bifilm inclusions is discussed. These inclusions reduce the quality of the castings, but they are a catalyst for the growth of spheroidal graphite that crystallizes in their vicinity. The research was carried out for cast iron with a highly hyper-eutectic composition. Scanning electron microscopy and EDS analysis were used in the research. A detailed analysis of the chemical composition was also carried out based on the spectrometric method, weight method, etc. Based on the obtained results, a model of spheroidal graphite crystallization near bifilm inclusions was proposed. The surface of the analyzed graphite particles was smooth, which suggests a primary crystallization process. The phenomenon of simple graphite and bifilm segregation towards the heat center of the castings was also documented.

5.
PLoS One ; 16(5): e0250938, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34014941

RESUMO

The COVID-19 pandemic seems to be the most important phenomenon observed from March 2020 in virtually all countries of the world. The necessity to prevent the spread of COVID-19 and keep health care systems efficient resulted in the forced, drastic limitation of economic activity. Many service sectors were hit particularly hard with this but industry and agriculture were also affected. In particular, the pandemic substantially influenced financial markets and we can observe that some markets or instruments vary in stability since they have been affected in the different degree. In the paper, we present the problem of stability of stock markets during the COVID-19 pandemic. Due to the low number of works related to CEE countries during the pandemic, we analyze the Warsaw Stock Exchange, which is one of the most important markets in the CEE. Our main goal was to find how various industries represented by stock market indices have reacted to the COVID-19 shock and consequently which sectors turned out to keep stability and remained resistant to the pandemic. In our investigation, we use two clustering methods: the K-means and the Ward techniques with the criterion of maximizing the silhouette coefficient and six indicators describing stability in terms of profitability, volume, overbought/oversold conditions and volatility. The results of the research present that during the pandemic it was possible to identify 5 clusters of sector indices in the short term and 4 in the medium term. We found that the composition of the clusters is quite stable over time and that none of the obtained clusters can be univocally considered the most or the least stable taking into account all the analyzed indicators. However, we showed that the obtained clusters have different stability origins, i.e. they vary from each other in terms of the investigated indicators of stability.


Assuntos
COVID-19/economia , Comércio/economia , Investimentos em Saúde/economia , Pandemias/economia , Humanos , Modelos Econômicos
6.
Materials (Basel) ; 13(14)2020 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-32668757

RESUMO

In recent years, white chromium cast iron has gained a well-settled position among wear-resistant materials. In recent times, chromium cast iron samples containing titanium have attracted attention. In cast iron samples, titanium combines with carbon and forms TiC particles, which may be form a crystallization underlay for eutectic M7C3 carbides and austenite. Accordingly, the inoculation process occurring in the crystallizing alloy should result in the proper, regular distribution of fine eutectic chromium carbides in the austenitic matrix. The presented research was conducted on 20% Cr hypoeutectic white cast iron with the addition of 0.5, 1, and 2% of Ti. Ti inoculation and the presence of TiC allowed for superior wear properties to be obtained. However, the conducted study revealed a significant decrease in the impact strength of examined alloys, especially for the cast iron samples with a high amount of Ti, in which the TiC compounds agglomerated. Titanium compounds accumulate in clusters and their distribution is irregular. Most of the TiC compounds were transported by the crystallization front into the center of the castings, where micropores were formed, meaning they were no longer effective crystallization underlays. In the authors' opinion, the agglomerate formation is strictly connected with the appearance of bifilm defects in the casting microstructure. The conducted research shows how an incorrect volume of an additive may have negative influences on the properties of the casting. This is a vital issue not only from a technological point of view, but also for economic reasons.

7.
Materials (Basel) ; 13(7)2020 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-32283593

RESUMO

The study was carried out to evaluate five SiMo cast iron grades and their resistance to chemical corrosion at elevated temperature. Corrosion tests were carried out under conditions of an actual cyclic operation of a retort coal-fired boiler. The duration of the study was 3840 h. The range of temperature changes during one cycle was in the range of 300-650 °C. Samples of SiMo cast iron with Si content at the level of 5% and variable Mo content in the range 0%-2.5% were used as the material for the study. The examined material was subjected to preliminary metallographic analysis using scanning microscopy and an Energy dispersive spectroscopy (EDS) system. The chemical composition was determined on the basis of a Leco spectrometer and a Leco carbon and sulfur analyzer. The examination of the oxide layer was carried out with the use of Scanning electron microscope (SEM), EDS, and X-ray diffraction (XRD) methods. It was discovered that, in the analyzed alloys, oxide layers consisting of Fe2O3, Fe3O4, SO2, and Fe2SiO4 were formed. The analyzed oxide layers were characterized by high adhesion to the substrate material, and their total thickness was about 20 µm.

8.
Materials (Basel) ; 13(5)2020 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-32182851

RESUMO

The article presents issues related to melting ductile iron grade EN-GJS-400-15, with different proportions of feedstock (steel scrap and pig iron). The main attention was paid to determining the impact of silicon carbide on the structure and properties of melted cast iron. In the conducted melts, carbon and silicon deficiencies were supplemented with a suitably chosen carburizer, ferrosilicon, and SiC metallurgical silicon carbide. The percentage of silicon carbide in the charge ranged from 0 to 0.91%. The basic condition for the planning of melts was to maintain the repeatability of the chemical composition of the output cast iron and cast iron after the secondary treatment of liquid metal with various charge compositions. Based on the tests, calculations, and analyses of the results obtained, it was concluded that the addition of SiC may increase the number and size of graphite precipitates. Increasing the SiC content in the charge also caused a change in the solidification nature of the alloy and the mechanism of growth of spheroidal graphite precipitates, causing their surface to form a scaly shell. The influence of the addition of silicon carbide on the reduction of the temperature of liquidus in the alloys was also observed. Silicon carbide had a positive effect on the structure and properties of melted alloys. The introduction of SiC into the melting in the studied range caused an increase in the content of carbon and silicon without causing an increase in the amount of impurities in the alloy.

9.
Materials (Basel) ; 12(4)2019 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-30795511

RESUMO

The article presents the issue of electrical resistivity measurement of carbon materials. The device that was developed by the authors is described and is the subject of a Polish patent. The innovative approach of the setup is based on the possibility of measuring the resistivity of grainy (powdered, dusty) materials without having to conduct their preliminary pressing. The material that is to be analyzed is placed inside the chamber made of electrically non-conducting material. The sample is then compacted with pneumatically driven pistons and the compaction force can be controlled by the air pressure. The device as proposed by the authors works at a pressure of 900 kPa, which is equal to the compaction force of 1.2 kN. Resistivity is calculated on the basis of the voltage drop recorded on the sample length. The research covers the analysis of the influence of carbon material grade and compaction force on the resistivity value. It was stated that the resistivity of the graphite materials that were analyzed here changed within the range of 43⁻172 µm: petroleum coke-360⁻780 µm; the anthracite-1900⁻3900 µm. The experimental method presented here can be used whenever carbon materials are present in the form of grains.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...