Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Front Immunol ; 14: 1107848, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36936963

RESUMO

Introduction: Humanized mice are emerging as valuable models to experimentally evaluate the impact of different immunotherapeutics on the human immune system. These immunodeficient mice are engrafted with human cells or tissues, that then mimic the human immune system, offering an alternative and potentially more predictive preclinical model. Immunodeficient NSG mice engrafted with human CD34+ cord blood stem cells develop human T cells educated against murine MHC. However, autoimmune graft versus host disease (GvHD), mediated by T cells, typically develops 1 year post engraftment. Methods: Here, we have used the development of GvHD in NSG mice, using donors with HLA alleles predisposed to autoimmunity (psoriasis) to weight in favor of GvHD, as an endpoint to evaluate the relative potency of monoclonal and BiSpecific antibodies targeting PD-1 and CTLA-4 to break immune tolerance. Results: We found that treatment with either a combination of anti-PD-1 & anti-CTLA-4 mAbs or a quadrivalent anti-PD-1/CTLA-4 BiSpecific (MEDI8500), had enhanced potency compared to treatment with anti-PD-1 or anti-CTLA-4 monotherapies, increasing T cell activity both in vitro and in vivo. This resulted in accelerated development of GvHD and shorter survival of the humanized mice in these treatment groups commensurate with their on target activity. Discussion: Our findings demonstrate the potential of humanized mouse models for preclinical evaluation of different immunotherapies and combinations, using acceleration of GvHD development as a surrogate of aggravated antigenic T-cell response against host.


Assuntos
Doença Enxerto-Hospedeiro , Inibidores de Checkpoint Imunológico , Humanos , Animais , Camundongos , Camundongos SCID , Linfócitos T , Autoimunidade
3.
Front Immunol ; 13: 836492, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35493482

RESUMO

Severe COVID-19 can be associated with a prothrombotic state, increasing risk of morbidity and mortality. The SARS-CoV-2 spike glycoprotein is purported to directly promote platelet activation via the S1 subunit and is cleaved from host cells during infection. High plasma concentrations of S1 subunit are associated with disease progression and respiratory failure during severe COVID-19. There is limited evidence on whether COVID-19 vaccine-induced spike protein is similarly cleaved and on the immediate effects of vaccination on host immune responses or hematology parameters. We investigated vaccine-induced S1 subunit cleavage and effects on hematology parameters using AZD1222 (ChAdOx1 nCoV-19), a simian, replication-deficient adenovirus-vectored COVID-19 vaccine. We observed S1 subunit cleavage in vitro following AZD1222 transduction of HEK293x cells. S1 subunit cleavage also occurred in vivo and was detectable in sera 12 hours post intramuscular immunization (1x1010 viral particles) in CD-1 mice. Soluble S1 protein levels decreased within 3 days and were no longer detectable 7-14 days post immunization. Intravenous immunization (1x109 viral particles) produced higher soluble S1 protein levels with similar expression kinetics. Spike protein was undetectable by immunohistochemistry 14 days post intramuscular immunization. Intramuscular immunization resulted in transiently lower platelet (12 hours) and white blood cell (12-24 hours) counts relative to vehicle. Similarly, intravenous immunization resulted in lower platelet (24-72 hours) and white blood cell (12-24 hours) counts, and increased neutrophil (2 hours) counts. The responses observed with either route of immunization represent transient hematologic changes and correspond to expected innate immune responses to adenoviral infection.


Assuntos
COVID-19 , Hematologia , Vacinas Virais , Animais , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , ChAdOx1 nCoV-19 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus
4.
Vaccine ; 40(2): 192-195, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-34865878

RESUMO

Biodistribution studies of adenovirus-based vaccines support their clinical development by evaluating their spread and persistence following in vivo administration. AZD1222 (ChAdox1 nCov-19) is a replication-deficient non-human adenovirus-vectored vaccine for coronavirus disease 2019. In this nonclinical study, the biodistribution of AZD1222 was assessed in mice for 29 days following intramuscular injection. Results show that AZD1222 was safe and well tolerated, with a spread that was largely confined to administration sites and the proximal sciatic nerve, with low levels observed in sites that are involved in rapid clearance of particulates by the reticuloendothelial system. Accordingly, levels of AZD1222 decreased from Day 2 to Day 29, indicating clearance. There were no quantifiable levels of AZD1222 in the blood, brain, spinal cord, and reproductive tissue, suggesting a lack of widespread or long-term distribution of AZD1222 vector DNA throughout the body following its administration.


Assuntos
COVID-19 , ChAdOx1 nCoV-19 , Animais , Vacinas contra COVID-19 , Humanos , Camundongos , SARS-CoV-2 , Distribuição Tecidual
5.
Reprod Toxicol ; 104: 134-142, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34324966

RESUMO

AZD1222 (ChAdOx1 nCoV-19) is a COVID-19 vaccine that is not yet licensed for use during pregnancy. To support the inclusion of pregnant and breastfeeding people in AZD1222 clinical studies, a non-clinical developmental and reproductive toxicity study was performed to evaluate its effects on fertility and reproductive processes of female CD-1 mice during the embryofetal development phase, and postnatal outcomes during the littering phase. Immunogenicity assessments were also made in dams, fetuses, and pups. There were no vaccine-related unscheduled deaths throughout the study. Furthermore, there were no vaccine-related effects on female reproduction, fetal or pup survival, fetal external, visceral, or skeletal findings, pup physical development, and no abnormal gross pathology findings in pups or dams. Antibody responses raised in dams were maintained throughout gestation and postnatal periods, and seroconversion in fetuses and pups indicate placental and lactational transfer of immunoglobulins. Together with clinical data from non-pregnant people, these results support the inclusion of pregnant and breastfeeding people in AZD1222 clinical studies.


Assuntos
Anticorpos Antivirais/sangue , Vacinas contra COVID-19/administração & dosagem , Imunogenicidade da Vacina , Vacinação , Animais , Biomarcadores/sangue , Vacinas contra COVID-19/toxicidade , ChAdOx1 nCoV-19 , Feminino , Feto/efeitos dos fármacos , Feto/imunologia , Feto/metabolismo , Idade Gestacional , Lactação/imunologia , Lactação/metabolismo , Troca Materno-Fetal , Camundongos , Placenta/imunologia , Placenta/metabolismo , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Medição de Risco , Soroconversão
6.
Clin Transl Immunology ; 9(11): e1202, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33173582

RESUMO

OBJECTIVES: Humanised mice have emerged as valuable models for pre-clinical testing of the safety and efficacy of immunotherapies. Given the variety of models available, selection of the most appropriate humanised mouse model is critical in study design. Here, we aimed to develop a model for predicting cytokine release syndrome (CRS) while minimising graft-versus-host disease (GvHD). METHODS: To overcome donor-induced variation, we directly compared the in vitro and in vivo immune phenotype of immunodeficient NSG mice reconstituted with human bone marrow (BM) CD34+ haematopoietic stem cells (HSCs), peripheral blood mononuclear cells (PBMCs) or spleen mononuclear cells (SPMCs) from the same human donors. SPMC engraftment in NSG-dKO mice, which lack MHC class I and II, was also evaluated as a strategy to limit GvHD. Another group of mice was engrafted with umbilical cord blood (UCB) CD34+ HSCs. Induction of CRS in vivo was investigated upon administration of the anti-CD3 monoclonal antibody OKT3. RESULTS: PBMC- and SPMC-reconstituted NSG mice showed short-term survival, with engrafted human T cells exhibiting mostly an effector memory phenotype. Survival in SPMC-reconstituted NSG-dKO mice was significantly longer. Conversely, both BM and UCB-HSC models showed longer survival, without demonstrable GvHD and a more naïve T-cell phenotype. PBMC- and SPMC-reconstituted mice, but not BM-HSC or UCB-HSC mice, experienced severe clinical signs of CRS upon administration of OKT3. CONCLUSION: PBMC- and SPMC-reconstituted NSG mice better predict OKT3-mediated CRS. The SPMC model allows generation of large experimental groups, and the use of NSG-dKO mice mitigates the limitation of early GvHD.

7.
Vaccine ; 38(13): 2859-2869, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32089463

RESUMO

To examine the link between meningococcal C (MenC) vaccine size and immunogenic response, a panel of MenC glycoconjugate vaccines were prepared differing in chain length, molar mass and hydrodynamic volume. The preparations consisted of different lengths of MenC polysaccharide (PS) covalently linked to monomeric purified tetanus toxoid (TT) carrier protein using the coupling reagent ethylcarbodiimide hydrochloride (EDC). Size exclusion chromatography with multi-angle light scattering (SEC-MALS) and viscometry analysis confirmed that the panel of MenC-TT conjugates spanned masses of 191,500 to 2,348,000 g/mol, and hydrodynamic radii ranging from 12.1 to 47.9 nm. The two largest conjugates were elliptical in shape, whereas the two smallest conjugates were more spherical. The larger conjugates appeared to fit a model described by multiple TTs with cross-linked PS, typical of lattice-like networks described previously for TT conjugates, while the smaller conjugates were found to fit a monomeric or dimeric TT configuration. The effect of vaccine conjugate size on immune responses was determined using a two-dose murine immunization. The two larger panel vaccine conjugates produced higher anti-MenC IgG1 and IgG2b titres after the second dose. Larger vaccine conjugate size also stimulated greater T-cell proliferative responses in an in vitro recall assay, although cytokines indicative of a T-helper response were not measurable. In conclusion, larger MenC-TT conjugates up to 2,348,000 g/mol produced by EDC chemistry correlate with greater humoral and cellular murine immune responses. These observations suggest that conjugate size can be an important modulator of immune response.


Assuntos
Carbodi-Imidas , Imunogenicidade da Vacina , Vacinas Meningocócicas/imunologia , Neisseria meningitidis Sorogrupo C , Toxoide Tetânico/imunologia , Animais , Anticorpos Antibacterianos , Imunoconjugados/imunologia , Camundongos , Neisseria meningitidis Sorogrupo C/imunologia , Polissacarídeos Bacterianos/imunologia , Vacinas Combinadas , Vacinas Conjugadas
8.
Cytokine X ; 2(4): 100042, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33458650

RESUMO

Immunomodulatory therapeutics such as monoclonal antibodies (mAb) carry an inherent risk of undesired immune reactions. One such risk is cytokine release syndrome (CRS), a rapid systemic inflammatory response characterized by the secretion of pro-inflammatory cytokines from immune cells. It is crucial for patient safety to correctly identify potential risk of CRS prior to first-in-human dose administration. For this purpose, a variety of in vitro cytokine release assays (CRA) are routinely used as part of the preclinical safety assessment of novel therapeutic mAbs. One of the challenges for the development and comparison of CRA performance is the lack of availability of standard positive and negative control mAbs for use in assay qualification. To address this issue, the National Institute for Biological Standards and Control (NIBSC) developed a reference panel of lyophilised mAbs known to induce CRS in the clinic: human anti-CD52, mouse anti-CD3 and human superagonistic (SA) anti-CD28 mAb manufactured according to the respective published sequences of Campath-1H® (alemtuzumab, IgG1) , Orthoclone OKT-3® (muromonab, IgG2a) and TGN1412 (theralizumab, IgG4), as well as three isotype matched negative controls (human IgG1, mouse IgG2a and human IgG4, respectively). The relative capacity of these control mAbs to stimulate the release of IFN-γ, IL-2, TNF-α and IL-6 in vitro was evaluated in eleven laboratories in an international collaborative study mediated through the HESI Immuno-safety Technical Committee Cytokine Release Assay Working Group. Participants tested the NIBSC mAbs in a variety of CRA platforms established at each institution. This paper presents the results from the centralised cytokine quantification on all the plasma/supernatants corresponding to the stimulation of immune cells in the different CRA platforms by a single concentration of each mAb. Each positive control mAb induced significant cytokine release in most of the tested CRA platforms. There was a high inter-laboratory variability in the levels of cytokines produced, but similar patterns of response were observed across laboratories that replicated the cytokine release patterns previously published for the respective clinical therapeutic mAbs. Therefore, the positive and negative mAbs are suitable as a reference panel for the qualification and validation of CRAs, comparison of different CRA platforms (e.g. solid vs aqueous phase), and intra- and inter-laboratory comparison of CRA performance. Thus, the use of this panel of positive and negative control mAbs will increase the confidence in the robustness of a CRA platform to identify a potential CRS risk for novel immunomodulatory therapeutic candidates.

9.
Toxicol Pathol ; 48(2): 302-316, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31847725

RESUMO

Significant advances in immunotherapies have resulted in the increasing need of predictive preclinical models to improve immunotherapeutic drug development, treatment combination, and to prevent or minimize toxicity in clinical trials. Immunodeficient mice reconstituted with human immune system (HIS), termed humanized mice or HIS mice, permit detailed analysis of human immune biology, development, and function. Although this model constitutes a great translational model, some aspects need to be improved as the incomplete engraftment of immune cells, graft versus host disease and the lack of human cytokines and growth factors. In this review, we discuss current HIS platforms, their pathology, and recent advances in their development to improve the quality of human immune cell reconstitution. We also highlight new technologies that can be used to better understand these models and how improved characterization is needed for their application in immuno-oncology safety, efficacy, and new modalities therapy development.


Assuntos
Modelos Animais de Doenças , Sistema Imunitário , Técnicas Imunológicas , Oncologia/métodos , Alergia e Imunologia , Animais , Humanos , Fatores Imunológicos/farmacologia , Camundongos
10.
J Virol ; 93(21)2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31413132

RESUMO

Vaccines aimed at inducing T cell responses to protect against human immunodeficiency virus (HIV) infection have been under development for more than 15 years. Replication-defective adenovirus (rAd) vaccine vectors are at the forefront of this work and have been tested extensively in the simian immunodeficiency virus (SIV) challenge macaque model. Vaccination with rAd vectors coding for SIV Gag or other nonenvelope proteins induces T cell responses that control virus load but disappointingly is unsuccessful so far in preventing infection, and attention has turned to inducing antibodies to the envelope. However, here we report that Mauritian cynomolgus macaques (MCM), Macaca fascicularis, vaccinated with unmodified SIV gag alone in a DNA prime followed by an rAd boost exhibit increased protection from infection by repeated intrarectal challenge with low-dose SIVmac251. There was no evidence of infection followed by eradication. A significant correlation was observed between cytokine expression by CD4 T cells and delayed infection. Vaccination with gag fused to the ubiquitin gene or fragmented, designed to increase CD8 magnitude and breadth, did not confer resistance to challenge or enhance immunity. On infection, a significant reduction in peak virus load was observed in all vaccinated animals, including those vaccinated with modified gag These findings suggest that a nonpersistent viral vector vaccine coding for internal virus proteins may be able to protect against HIV type 1 (HIV-1) infection. The mechanisms are probably distinct from those of antibody-mediated virus neutralization or cytotoxic CD8 cell killing of virus-infected cells and may be mediated in part by CD4 T cells.IMPORTANCE The simian immunodeficiency virus (SIV) macaque model represents the best animal model for testing new human immunodeficiency virus type 1 (HIV-1) vaccines. Previous studies employing replication-defective adenovirus (rAd) vectors that transiently express SIV internal proteins induced T cell responses that controlled virus load but did not protect against virus challenge. However, we show for the first time that SIV gag delivered in a DNA prime followed by a boost with an rAd vector confers resistance to SIV intrarectal challenge. Other partially successful SIV/HIV-1 protective vaccines induce antibody to the envelope and neutralize the virus or mediate antibody-dependent cytotoxicity. Induction of CD8 T cells which do not prevent initial infection but eradicate infected cells before infection becomes established has also shown some success. In contrast, the vaccine described here mediates resistance by a different mechanism from that described above, which may reflect CD4 T cell activity. This could indicate an alternative approach for HIV-1 vaccine development.


Assuntos
Produtos do Gene gag/imunologia , Vacinas contra a SAIDS/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Vírus da Imunodeficiência Símia/imunologia , Adenoviridae/genética , Adenoviridae/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Vírus Defeituosos/genética , Vírus Defeituosos/imunologia , Produtos do Gene gag/genética , Vetores Genéticos/genética , Vetores Genéticos/imunologia , Macaca fascicularis , Masculino , Vacinas contra a SAIDS/administração & dosagem , Vacinas contra a SAIDS/genética , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/genética , Vacinação , Vacinas de DNA/administração & dosagem , Vacinas de DNA/genética , Vacinas de DNA/imunologia , Carga Viral
11.
Monoclon Antib Immunodiagn Immunother ; 38(2): 60-69, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31009338

RESUMO

CD28 superagonist (CD28SA), a therapeutic immunomodulatory monoclonal antibody triggered rapid and exaggerated activation of CD4+ effector memory T cells (TEMs) in humans with unwanted serious adverse effects. It is well known that distinct metabolic programs determine the fate and responses of immune cells. In this study, we show that human CD4+ TEMs stimulated with CD28SA adopt a metabolic program similar to those of tumor cells with enhanced glucose utilization, lipid biosynthesis, and proliferation in hypoxic conditions. Identification of metabolic profiles underlying hyperactive T cell activation would provide a platform to test safety of immunostimulatory antibodies.


Assuntos
Antígenos CD28/imunologia , Linfócitos T CD4-Positivos/imunologia , Glicólise/imunologia , Lipogênese/imunologia , Ativação Linfocitária/imunologia , Neoplasias/metabolismo , Acetilcoenzima A/metabolismo , Anticorpos Monoclonais/imunologia , Antígenos CD28/metabolismo , Proliferação de Células , Glucose/metabolismo , Humanos , Memória Imunológica , Neoplasias/imunologia , Neoplasias/patologia , Proteínas Quinases/metabolismo , Linfócitos T Reguladores/imunologia , Células Tumorais Cultivadas
12.
Cytometry B Clin Cytom ; 96(6): 508-513, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30790450

RESUMO

BACKGROUND: Over 2,000 people a year in the United Kingdom need a bone marrow or blood stem cell transplant. It is important to accurately quantify the hematopoietic stem cells to predict whether the transplant will be successful in replenishing the immune system. However, they are present at low frequency, which complicates accurate quantification. The current gold standard method is single-platform flow cytometry using internal reference counting beads to determine the concentration of CD34 cells. However, volumetric flow cytometers have the ability to measure the acquisition volume, which removes the need for reference beads for calculation of cell concentrations. METHOD: In this study, we compared both methods for calculating CD34 cell concentrations in volumetric cytometers, using either the volume reading or the number of reference beads for calculation. In addition, the uncertainty of measurement for each method was estimated. RESULTS: The results show that both methods have similar uncertainties of measurement. Regression analysis showed low to no statistical difference in CD34 cell concentrations obtained with each method. CONCLUSIONS: Overall, this study suggests that the volumetric method is a valid approach but that the adoption of this technology may be hindered without some form of external calibration of volume readings to increase confidence in the measurement. © 2019 The Authors. Cytometry Part B: Clinical Cytometry published by Wiley Periodicals, Inc. on behalf of International Clinical Cytometry Society.


Assuntos
Antígenos CD34/análise , Citometria de Fluxo , Células-Tronco Hematopoéticas/citologia , Contagem de Células , Humanos , Análise de Regressão
13.
PLoS Pathog ; 12(12): e1006083, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28002473

RESUMO

In order to evaluate the role of persisting virus replication during occult phase immunisation in the live attenuated SIV vaccine model, a novel SIVmac239Δnef variant (SIVrtTA) genetically engineered to replicate in the presence of doxycycline was evaluated for its ability to protect against wild-type SIVmac239. Indian rhesus macaques were vaccinated either with SIVrtTA or with SIVmac239Δnef. Doxycycline was withdrawn from 4 of 8 SIVrtTA vaccinates before challenge with wild-type virus. Unvaccinated challenge controls exhibited ~107 peak plasma viral RNA copies/ml persisting beyond the acute phase. Six vaccinates, four SIVmac239Δnef and two SIVrtTA vaccinates exhibited complete protection, defined by lack of wild-type viraemia post-challenge and virus-specific PCR analysis of tissues recovered post-mortem, whereas six SIVrtTA vaccinates were protected from high levels of viraemia. Critically, the complete protection in two SIVrtTA vaccinates was associated with enhanced SIVrtTA replication in the immediate post-acute vaccination period but was independent of doxycycline status at the time of challenge. Mutations were identified in the LTR promoter region and rtTA gene that do not affect doxycycline-control but were associated with enhanced post-acute phase replication in protected vaccinates. High frequencies of total circulating CD8+T effector memory cells and a higher total frequency of SIV-specific CD8+ mono and polyfunctional T cells on the day of wild-type challenge were associated with complete protection but these parameters were not predictive of outcome when assessed 130 days after challenge. Moreover, challenge virus-specific Nef CD8+ polyfunctional T cell responses and antigen were detected in tissues post mortem in completely-protected macaques indicating post-challenge control of infection. Within the parameters of the study design, on-going occult-phase replication may not be absolutely required for protective immunity.


Assuntos
Vacinas contra a SAIDS/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/imunologia , Replicação Viral/imunologia , Animais , Imuno-Histoquímica , Imunofenotipagem , Macaca mulatta , Reação em Cadeia da Polimerase , Vacinas Atenuadas
14.
Cytokine ; 85: 101-8, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27309676

RESUMO

In October 2013, the International Life Sciences Institute - Health and Environmental Sciences Institute Immunotoxicology Technical Committee (ILSI-HESI ITC) held a one-day workshop entitled, "Workshop on Cytokine Release: State-of-the-Science, Current Challenges and Future Directions". The workshop brought together scientists from pharmaceutical, academic, health authority, and contract research organizations to discuss novel approaches and current challenges for the use of in vitro cytokine release assays (CRAs) for the identification of cytokine release syndrome (CRS) potential of novel monoclonal antibody (mAb) therapeutics. Topics presented encompassed a regulatory perspective on cytokine release and assessment, case studies regarding the translatability of preclinical cytokine data to the clinic, and the latest state of the science of CRAs, including comparisons between mAb therapeutics within one platform and across several assay platforms, a novel physiological assay platform, and assay optimization approaches such as determination of FcR expression profiles and use of statistical tests. The data and approaches presented confirmed that multiple CRA platforms are in use for identification of CRS potential and that the choice of a particular CRA platform is highly dependent on the availability of resources for individual laboratories (e.g. positive and negative controls, number of human blood donors), the assay through-put required, and the mechanism-of-action of the therapeutic candidate to be tested. Workshop participants agreed that more data on the predictive performance of CRA platforms is needed, and current efforts to compare in vitro assay results with clinical cytokine assessments were discussed. In summary, many laboratories continue to focus research efforts on the improvement of the translatability of current CRA platforms as well explore novel approaches which may lead to more accurate, and potentially patient-specific, CRS prediction in the future.


Assuntos
Citocinas/sangue , Animais , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Bioensaio/métodos , Humanos , Doenças do Sistema Imunitário/sangue , Doenças do Sistema Imunitário/tratamento farmacológico
15.
J Gen Virol ; 96(Pt 7): 1918-29, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25834093

RESUMO

Vaccination with live attenuated simian immunodeficiency virus (SIV) in non-human primate species provides a means of characterizing the protective processes of retroviral superinfection and may lead to novel advances of human immunodeficiency virus (HIV)/AIDS vaccine design. The minimally attenuated SIVmacC8 vaccine has been demonstrated to elicit early potent protection against pathogenic rechallenge with genetically diverse viral isolates in cynomolgus macaques (Macaca fascicularis). In this study, we have characterized further the biological breadth of this vaccine protection by assessing the ability of both the nef-disrupted SIVmacC8 and its nef-intact counterpart SIVmacJ5 viruses to prevent superinfection with the macrophage/neurotropic SIVmac239/17E-Fr (SIVmac17E-Fr) isolate. Inoculation with either SIVmacC8 or SIVmacJ5 and subsequent detailed characterization of the viral replication kinetics revealed a wide range of virus-host outcomes. Both nef-disrupted and nef-intact immunizing viruses were able to prevent establishment of SIVmac17E-Fr in peripheral blood and secondary lymphoid tissues. Differences in virus kinetics, indicative of an active process, identified uncontrolled replication in one macaque which although able to prevent SIVmac17E-Fr superinfection led to extensive neuropathological complications. The ability to prevent a biologically heterologous, CD4-independent/CCR5+ viral isolate and the macrophage-tropic SIVmac316 strain from establishing infection supports the hypothesis that direct target cell blocking is unlikely to be a central feature of live lentivirus vaccination. These data provide further evidence to demonstrate that inoculation of a live retroviral vaccine can deliver broad spectrum protection against both macrophage-tropic as well as lymphocytotropic viruses. These data add to our knowledge of live attenuated SIV vaccines but further highlight potential safety concerns of vaccinating with a live retrovirus.


Assuntos
Vacinas contra a SAIDS/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Vírus da Imunodeficiência Símia/imunologia , Vacinação/métodos , Animais , Macaca fascicularis , Macrófagos/virologia , Vacinas contra a SAIDS/administração & dosagem , Vacinas contra a SAIDS/genética , Vírus da Imunodeficiência Símia/genética , Superinfecção/prevenção & controle , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia
16.
FASEB J ; 29(6): 2595-602, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25746794

RESUMO

There is an urgent unmet need for human tissue bioassays to predict cytokine storm responses to biologics. Current bioassays that detect cytokine storm responses in vitro rely on endothelial cells, usually from umbilical veins or cell lines, cocultured with freshly isolated peripheral blood mononuclear cells (PBMCs) from healthy adult volunteers. These assays therefore comprise cells from 2 separate donors and carry the disadvantage of mismatched tissues and lack the advantage of personalized medicine. Current assays also do not fully delineate mild (such as Campath) and severe (such as TGN1412) cytokine storm-inducing drugs. Here, we report a novel bioassay where endothelial cells grown from stem cells in the peripheral blood (blood outgrowth endothelial cells) and PBMCs from the same donor can be used to create an autologous coculture bioassay that responds by releasing a plethora of cytokines to authentic TGN1412 but only modestly to Campath and not to control antibodies such as Herceptin, Avastin, and Arzerra. This assay performed better than the traditional mixed donor assay in terms of cytokine release to TGN1412 and, thus, we suggest provides significant advancement and a definitive system by which biologics can be tested and paves the way for personalized medicine.


Assuntos
Produtos Biológicos/farmacologia , Citocinas/metabolismo , Células Endoteliais/efeitos dos fármacos , Leucócitos Mononucleares/efeitos dos fármacos , Alemtuzumab , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais Humanizados/farmacologia , Bevacizumab , Bioensaio/métodos , Proliferação de Células/efeitos dos fármacos , Técnicas de Cocultura , Meios de Cultura/farmacologia , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Ensaio de Imunoadsorção Enzimática , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Interleucina-2/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/metabolismo , Reprodutibilidade dos Testes , Soro/química , Trastuzumab , Fator de Necrose Tumoral alfa/metabolismo
17.
Cytometry A ; 87(3): 244-53, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25655255

RESUMO

A surface-labeled lyophilized lymphocyte (sLL) preparation has been developed using human peripheral blood mononuclear cells prelabeled with a fluorescein isothiocyanate conjugated anti-CD4 monoclonal antibody. The sLL preparation is intended to be used as a reference material for CD4+ cell counting including the development of higher order reference measurement procedures and has been evaluated in the pilot study CCQM-P102. This study was conducted across 16 laboratories from eight countries to assess the ability of participants to quantify the CD4+ cell count of this reference material and to document cross-laboratory variability plus associated measurement uncertainties. Twelve different flow cytometer platforms were evaluated using a standard protocol that included calibration beads used to obtain quantitative measurements of CD4+ T cell counts. There was good overall cross-platform and counting method agreement with a grand mean of the laboratory calculated means of (301.7 ± 4.9) µL(-1) CD4+ cells. Excluding outliers, greater than 90% of participant data agreed within ±15%. A major contribution to variation of sLL CD4+ cell counts was tube to tube variation of the calibration beads, amounting to an uncertainty of 3.6%. Variation due to preparative steps equated to an uncertainty of 2.6%. There was no reduction in variability when data files were centrally reanalyzed. Remaining variation was attributed to instrument specific differences. CD4+ cell counts obtained in CCQM-P102 are in excellent agreement and show the robustness of both the measurements and the data analysis and hence the suitability of sLL as a reference material for interlaboratory comparisons and external quality assessment.


Assuntos
Linfócitos T CD4-Positivos , Fluoresceína-5-Isotiocianato , Leucócitos Mononucleares , Fenótipo , Anticorpos/análise , Contagem de Linfócito CD4/métodos , Contagem de Linfócito CD4/normas , Linfócitos T CD4-Positivos/química , Fluoresceína-5-Isotiocianato/análise , Liofilização/métodos , Humanos , Leucócitos Mononucleares/química , Projetos Piloto
18.
MAbs ; 6(5): 1290-9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25517314

RESUMO

The CD28 superagonist (CD28SA) TGN1412 was administered to humans as an agent that can selectively activate and expand regulatory T cells but resulted in uncontrolled T cell activation accompanied by cytokine storm. The molecular mechanisms that underlie this uncontrolled T cell activation are unclear. Physiological activation of T cells leads to upregulation of not only activation molecules but also inhibitory receptors such as PD-1. We hypothesized that the uncontrolled activation of CD28SA-stimulated T cells is due to both the enhanced expression of activation molecules and the lack of or reduced inhibitory signals. In this study, we show that anti-CD3 antibody-stimulated human T cells undergo time-limited controlled DNA synthesis, proliferation and interleukin-2 secretion, accompanied by PD-1 expression. In contrast, CD28SA-activated T cells demonstrate uncontrolled activation parameters including enhanced expression of LFA-1 and CCR5 but fail to express PD-1 on the cell surface. We demonstrate the functional relevance of the lack of PD-1 mediated regulatory mechanism in CD28SA-stimulated T cells. Our findings provide a molecular explanation for the dysregulated activation of CD28SA-stimulated T cells and also highlight the potential for the use of differential expression of PD-1 as a biomarker of safety for T cell immunostimulatory biologics.


Assuntos
Anticorpos Monoclonais Humanizados/imunologia , Antígenos CD28/imunologia , Proteínas de Membrana/imunologia , Receptor de Morte Celular Programada 1/imunologia , Linfócitos T/imunologia , Anticorpos Monoclonais Humanizados/farmacologia , Western Blotting , Antígenos CD28/agonistas , Antígenos CD28/metabolismo , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Adesão Celular/efeitos dos fármacos , Adesão Celular/imunologia , Movimento Celular/efeitos dos fármacos , Movimento Celular/imunologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/imunologia , Células Endoteliais/metabolismo , Citometria de Fluxo , Humanos , Memória Imunológica/imunologia , Antígeno-1 Associado à Função Linfocitária/imunologia , Antígeno-1 Associado à Função Linfocitária/metabolismo , Proteínas de Membrana/metabolismo , Microscopia de Fluorescência , Receptor de Morte Celular Programada 1/metabolismo , Receptores CCR5/imunologia , Receptores CCR5/metabolismo , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/imunologia
19.
PLoS One ; 9(8): e104390, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25162725

RESUMO

Vaccination of Mauritian cynomolgus macaques with the attenuated nef-truncated C8 variant of SIVmac251/32H (SIVmacC8) induces early, potent protection against pathogenic, heterologous challenge before the maturation of cognate immunity. To identify processes that contribute to early protection in this model the pathogenesis, anatomical distribution and viral vaccine kinetics were determined in relation to localised innate responses triggered by vaccination. The early biodistribution of SIVmacC8 was defined by rapid, widespread dissemination amongst multiple lymphoid tissues, detectable after 3 days. Cell-associated viral RNA dynamics identified mesenteric lymph nodes (MLN) and spleen, as well as the gut mucosae, as early major contributors of systemic virus burden. Rapid, localised infection was populated by discrete foci of persisting virus-infected cells. Localised productive infection triggered a broad innate response, with type-1 interferon sensitive IRF-7, STAT-1, TRIM5α and ApoBEC3G genes all upregulated during the acute phase but induction did not prevent viral persistence. Profound changes in vaccine-induced cell-surface markers of immune activation were detected on macrophages, B-cells and dendritic cells (DC-SIGN, S-100, CD40, CD11c, CD123 and CD86). Notably, high DC-SIGN and S100 staining for follicular and interdigitating DCs respectively, in MLN and spleen were detected by 3 days, persisting 20 weeks post-vaccination. Although not formally evaluated, the early biodistribution of SIVmacC8 simultaneously targets multiple lymphoid tissues to induce strong innate immune responses coincident at the same sites critical for early protection from wild-type viruses. HIV vaccines which stimulate appropriate innate, as well as adaptive responses, akin to those generated by live attenuated SIV vaccines, may prove the most efficacious.


Assuntos
Imunidade Inata/efeitos dos fármacos , Vacinas contra a SAIDS/imunologia , Vacinas contra a SAIDS/farmacocinética , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Vírus da Imunodeficiência Símia/efeitos dos fármacos , Imunidade Adaptativa/efeitos dos fármacos , Animais , Antígenos CD/genética , Antígenos CD/imunologia , Linfócitos B/citologia , Linfócitos B/imunologia , Linfócitos B/virologia , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/imunologia , Células Dendríticas/citologia , Células Dendríticas/imunologia , Células Dendríticas/virologia , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/imunologia , Fator Regulador 7 de Interferon/genética , Fator Regulador 7 de Interferon/imunologia , Mucosa Intestinal/citologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/virologia , Lectinas Tipo C/genética , Lectinas Tipo C/imunologia , Linfonodos/citologia , Linfonodos/imunologia , Linfonodos/virologia , Macaca fascicularis , Macrófagos/citologia , Macrófagos/imunologia , Macrófagos/virologia , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/imunologia , Proteínas S100/genética , Proteínas S100/imunologia , Vacinas contra a SAIDS/administração & dosagem , Vacinas contra a SAIDS/biossíntese , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/genética , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/imunologia , Baço/citologia , Baço/imunologia , Baço/virologia , Vacinas Atenuadas , Carga Viral/efeitos dos fármacos , Dedos de Zinco/genética , Dedos de Zinco/imunologia
20.
PLoS One ; 9(2): e88670, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24523927

RESUMO

The detailed study of immune effector mechanisms in primate models of infectious disease has been limited by the inability to adoptively transfer lymphocytes from vaccinated animals into naïve immunocompetent recipients. Recent advances in our understanding of the Major Histocompatibility Complex diversity of Mauritian cynomolgus macaques enabled the establishment of a breeding program to generate Major Histocompatibility Complex (MHC)-identical animals. The current study utilised this resource to achieve an improved model of adoptive transfer of lymphocytes in macaques. The effect of route of transfusion on persistence kinetics of adoptively transferred lymphocytes was evaluated in an autologous transfer system. Results indicated that peripheral persistence kinetics were comparable following infusion by different routes, and that cells were detectable at equivalent levels in lymphoid tissues six weeks post-infusion. In a pilot-scale experiment, the persistence of adoptively transferred lymphocytes was compared in MHC-identical siblings and MHC-identical unrelated recipients. Lymphocytes transferred intra-peritoneally were detectable in the periphery within one hour of transfer and circulated at detectable levels in the periphery and lymph nodes for 10 days. Donor lymphocytes were detectable at higher levels in MHC-identical siblings compared with unrelated animals, however the total time of persistence did not differ. These results demonstrate a further refinement of the lymphocyte adoptive transfer system in Mauritian cynomolgus macaques and provide a foundation for hitherto impractical experiments to investigate mechanisms of cellular immunity in primate models of infectious disease.


Assuntos
Transferência Adotiva , Macaca fascicularis/genética , Macaca fascicularis/imunologia , Complexo Principal de Histocompatibilidade/genética , Complexo Principal de Histocompatibilidade/imunologia , Alelos , Animais , Feminino , Genótipo , Haplótipos , Teste de Histocompatibilidade , Imunofenotipagem , Linfócitos/citologia , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...