Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
J Neurosci Methods ; 403: 110053, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38163446

RESUMO

The EQIPD Quality System was designed with the ultimate mission to provide a framework to ensure the quality and integrity of non-regulated preclinical biomedical research. For research quality to be sustained over time, it is crucial to have continuous improvement mechanisms that routinely monitor the research-related processes and enable solutions for identified issues. The present article is focused on these monitoring and assessment procedures that make the EQIPD Quality System a fully functional 'system' (as opposed to a mere collection of guidelines, work instructions and policies). In this context, a critical instrument are the internal and external assessments of the EQIPD Quality System performance described in detail. The assessment procedures emphasize the unique nature of the EQIPD Quality System being user-friendly, flexible and fit-for-purpose. By undergoing the (voluntary) external EQIPD assessment (leading to the EQIPD certification after all EQIPD core requirements have been implemented), a research unit: (i) secures confidence in the quality of data generated, (ii) ensures continuous improvement of research processes, and (iii) obtains an independent seal of quality communicating commitment to best research practices to the research community.


Assuntos
Pesquisa Biomédica , Certificação
2.
J Neurosci Methods ; 401: 110003, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37918446

RESUMO

Recently, many funding agencies have released guidelines on the importance of considering sex as a biological variable (SABV) as an experimental factor, aiming to address sex differences and avoid possible sex biases to enhance the reproducibility and translational relevance of preclinical research. In neuroscience and pharmacology, the female sex is often omitted from experimental designs, with researchers generalizing male-driven outcomes to both sexes, risking a biased or limited understanding of disease mechanisms and thus potentially ineffective therapeutics. Herein, we describe key methodological aspects that should be considered when sex is factored into in vitro and in vivo experiments and provide practical knowledge for researchers to incorporate SABV into preclinical research. Both age and sex significantly influence biological and behavioral processes due to critical changes at different timepoints of development for males and females and due to hormonal fluctuations across the rodent lifespan. We show that including both sexes does not require larger sample sizes, and even if sex is included as an independent variable in the study design, a moderate increase in sample size is sufficient. Moreover, the importance of tracking hormone levels in both sexes and the differentiation between sex differences and sex-related strategy in behaviors are explained. Finally, the lack of robust data on how biological sex influences the pharmacokinetic (PK), pharmacodynamic (PD), or toxicological effects of various preclinically administered drugs to animals due to the exclusion of female animals is discussed, and methodological strategies to enhance the rigor and translational relevance of preclinical research are proposed.


Assuntos
Projetos de Pesquisa , Caracteres Sexuais , Animais , Masculino , Feminino , Reprodutibilidade dos Testes , Fatores Sexuais , Tamanho da Amostra
3.
Adv Neurobiol ; 30: 207-224, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36928852

RESUMO

Disappointments in translating preclinical findings into clinical efficacy have triggered a number of changes in neuroscience drug discovery ranging from investments diverted to other therapeutic areas to reduced reliance on efficacy claims derived from preclinical models. In this chapter, we argue that there are several existing examples that teach us on what needs to be done to improve the success rate. We advocate the reverse engineering approach that shifts the focus from preclinical efforts to "model" human disease states to pharmacodynamic activity as a common denominator in the journey to translate clinically validated phenomena to preclinical level and then back to humans. Combined with the research rigor, openness, and transparency, this reverse engineering approach is well set to bring new effective and safe medications to patients in need.


Assuntos
Neurociências , Pesquisa Translacional Biomédica , Humanos , Descoberta de Drogas
5.
Front Behav Neurosci ; 15: 755812, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34744655

RESUMO

Laboratory workflows and preclinical models have become increasingly diverse and complex. Confronted with the dilemma of a multitude of information with ambiguous relevance for their specific experiments, scientists run the risk of overlooking critical factors that can influence the planning, conduct and results of studies and that should have been considered a priori. To address this problem, we developed "PEERS" (Platform for the Exchange of Experimental Research Standards), an open-access online platform that is built to aid scientists in determining which experimental factors and variables are most likely to affect the outcome of a specific test, model or assay and therefore ought to be considered during the design, execution and reporting stages. The PEERS database is categorized into in vivo and in vitro experiments and provides lists of factors derived from scientific literature that have been deemed critical for experimentation. The platform is based on a structured and transparent system for rating the strength of evidence related to each identified factor and its relevance for a specific method/model. In this context, the rating procedure will not solely be limited to the PEERS working group but will also allow for a community-based grading of evidence. We here describe a working prototype using the Open Field paradigm in rodents and present the selection of factors specific to each experimental setup and the rating system. PEERS not only offers users the possibility to search for information to facilitate experimental rigor, but also draws on the engagement of the scientific community to actively expand the information contained within the platform. Collectively, by helping scientists search for specific factors relevant to their experiments, and to share experimental knowledge in a standardized manner, PEERS will serve as a collaborative exchange and analysis tool to enhance data validity and robustness as well as the reproducibility of preclinical research. PEERS offers a vetted, independent tool by which to judge the quality of information available on a certain test or model, identifies knowledge gaps and provides guidance on the key methodological considerations that should be prioritized to ensure that preclinical research is conducted to the highest standards and best practice.

6.
Elife ; 102021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-34028353

RESUMO

While high risk of failure is an inherent part of developing innovative therapies, it can be reduced by adherence to evidence-based rigorous research practices. Supported through the European Union's Innovative Medicines Initiative, the EQIPD consortium has developed a novel preclinical research quality system that can be applied in both public and private sectors and is free for anyone to use. The EQIPD Quality System was designed to be suited to boost innovation by ensuring the generation of robust and reliable preclinical data while being lean, effective and not becoming a burden that could negatively impact the freedom to explore scientific questions. EQIPD defines research quality as the extent to which research data are fit for their intended use. Fitness, in this context, is defined by the stakeholders, who are the scientists directly involved in the research, but also their funders, sponsors, publishers, research tool manufacturers, and collaboration partners such as peers in a multi-site research project. The essence of the EQIPD Quality System is the set of 18 core requirements that can be addressed flexibly, according to user-specific needs and following a user-defined trajectory. The EQIPD Quality System proposes guidance on expectations for quality-related measures, defines criteria for adequate processes (i.e. performance standards) and provides examples of how such measures can be developed and implemented. However, it does not prescribe any pre-determined solutions. EQIPD has also developed tools (for optional use) to support users in implementing the system and assessment services for those research units that successfully implement the quality system and seek formal accreditation. Building upon the feedback from users and continuous improvement, a sustainable EQIPD Quality System will ultimately serve the entire community of scientists conducting non-regulated preclinical research, by helping them generate reliable data that are fit for their intended use.


Assuntos
Pesquisa Biomédica/normas , Avaliação Pré-Clínica de Medicamentos/normas , Projetos de Pesquisa/normas , Comportamento Cooperativo , Confiabilidade dos Dados , Difusão de Inovações , Europa (Continente) , Humanos , Comunicação Interdisciplinar , Controle de Qualidade , Melhoria de Qualidade , Participação dos Interessados
8.
BMC Vet Res ; 16(1): 242, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32660541

RESUMO

Reproducible science requires transparent reporting. The ARRIVE guidelines (Animal Research: Reporting of In Vivo Experiments) were originally developed in 2010 to improve the reporting of animal research. They consist of a checklist of information to include in publications describing in vivo experiments to enable others to scrutinise the work adequately, evaluate its methodological rigour, and reproduce the methods and results. Despite considerable levels of endorsement by funders and journals over the years, adherence to the guidelines has been inconsistent, and the anticipated improvements in the quality of reporting in animal research publications have not been achieved. Here, we introduce ARRIVE 2.0. The guidelines have been updated and information reorganised to facilitate their use in practice. We used a Delphi exercise to prioritise and divide the items of the guidelines into 2 sets, the "ARRIVE Essential 10," which constitutes the minimum requirement, and the "Recommended Set," which describes the research context. This division facilitates improved reporting of animal research by supporting a stepwise approach to implementation. This helps journal editors and reviewers verify that the most important items are being reported in manuscripts. We have also developed the accompanying Explanation and Elaboration document, which serves (1) to explain the rationale behind each item in the guidelines, (2) to clarify key concepts, and (3) to provide illustrative examples. We aim, through these changes, to help ensure that researchers, reviewers, and journal editors are better equipped to improve the rigour and transparency of the scientific process and thus reproducibility.


Assuntos
Experimentação Animal , Guias como Assunto , Relatório de Pesquisa , Animais , Lista de Checagem
9.
Br J Pharmacol ; 177(16): 3617-3624, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32662519

RESUMO

Reproducible science requires transparent reporting. The ARRIVE guidelines (Animal Research: Reporting of In Vivo Experiments) were originally developed in 2010 to improve the reporting of animal research. They consist of a checklist of information to include in publications describing in vivo experiments to enable others to scrutinise the work adequately, evaluate its methodological rigour, and reproduce the methods and results. Despite considerable levels of endorsement by funders and journals over the years, adherence to the guidelines has been inconsistent, and the anticipated improvements in the quality of reporting in animal research publications have not been achieved. Here, we introduce ARRIVE 2.0. The guidelines have been updated and information reorganised to facilitate their use in practice. We used a Delphi exercise to prioritise and divide the items of the guidelines into 2 sets, the "ARRIVE Essential 10," which constitutes the minimum requirement, and the "Recommended Set," which describes the research context. This division facilitates improved reporting of animal research by supporting a stepwise approach to implementation. This helps journal editors and reviewers verify that the most important items are being reported in manuscripts. We have also developed the accompanying Explanation and Elaboration (E&E) document, which serves (1) to explain the rationale behind each item in the guidelines, (2) to clarify key concepts, and (3) to provide illustrative examples. We aim, through these changes, to help ensure that researchers, reviewers, and journal editors are better equipped to improve the rigour and transparency of the scientific process and thus reproducibility.


Assuntos
Experimentação Animal , Animais , Lista de Checagem , Reprodutibilidade dos Testes , Projetos de Pesquisa , Relatório de Pesquisa
10.
PLoS Biol ; 18(7): e3000410, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32663219

RESUMO

Reproducible science requires transparent reporting. The ARRIVE guidelines (Animal Research: Reporting of In Vivo Experiments) were originally developed in 2010 to improve the reporting of animal research. They consist of a checklist of information to include in publications describing in vivo experiments to enable others to scrutinise the work adequately, evaluate its methodological rigour, and reproduce the methods and results. Despite considerable levels of endorsement by funders and journals over the years, adherence to the guidelines has been inconsistent, and the anticipated improvements in the quality of reporting in animal research publications have not been achieved. Here, we introduce ARRIVE 2.0. The guidelines have been updated and information reorganised to facilitate their use in practice. We used a Delphi exercise to prioritise and divide the items of the guidelines into 2 sets, the "ARRIVE Essential 10," which constitutes the minimum requirement, and the "Recommended Set," which describes the research context. This division facilitates improved reporting of animal research by supporting a stepwise approach to implementation. This helps journal editors and reviewers verify that the most important items are being reported in manuscripts. We have also developed the accompanying Explanation and Elaboration (E&E) document, which serves (1) to explain the rationale behind each item in the guidelines, (2) to clarify key concepts, and (3) to provide illustrative examples. We aim, through these changes, to help ensure that researchers, reviewers, and journal editors are better equipped to improve the rigour and transparency of the scientific process and thus reproducibility.


Assuntos
Experimentação Animal , Guias como Assunto , Relatório de Pesquisa , Animais , Lista de Checagem
11.
PLoS Biol ; 18(7): e3000411, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32663221

RESUMO

Improving the reproducibility of biomedical research is a major challenge. Transparent and accurate reporting is vital to this process; it allows readers to assess the reliability of the findings and repeat or build upon the work of other researchers. The ARRIVE guidelines (Animal Research: Reporting In Vivo Experiments) were developed in 2010 to help authors and journals identify the minimum information necessary to report in publications describing in vivo experiments. Despite widespread endorsement by the scientific community, the impact of ARRIVE on the transparency of reporting in animal research publications has been limited. We have revised the ARRIVE guidelines to update them and facilitate their use in practice. The revised guidelines are published alongside this paper. This explanation and elaboration document was developed as part of the revision. It provides further information about each of the 21 items in ARRIVE 2.0, including the rationale and supporting evidence for their inclusion in the guidelines, elaboration of details to report, and examples of good reporting from the published literature. This document also covers advice and best practice in the design and conduct of animal studies to support researchers in improving standards from the start of the experimental design process through to publication.


Assuntos
Experimentação Animal , Guias como Assunto , Relatório de Pesquisa , Experimentação Animal/ética , Criação de Animais Domésticos , Animais , Intervalos de Confiança , Abrigo para Animais , Avaliação de Resultados em Cuidados de Saúde , Publicações , Distribuição Aleatória , Reprodutibilidade dos Testes , Tamanho da Amostra
12.
J Cereb Blood Flow Metab ; 40(9): 1769-1777, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32663096

RESUMO

Reproducible science requires transparent reporting. The ARRIVE guidelines (Animal Research: Reporting of In Vivo Experiments) were originally developed in 2010 to improve the reporting of animal research. They consist of a checklist of information to include in publications describing in vivo experiments to enable others to scrutinise the work adequately, evaluate its methodological rigour, and reproduce the methods and results. Despite considerable levels of endorsement by funders and journals over the years, adherence to the guidelines has been inconsistent, and the anticipated improvements in the quality of reporting in animal research publications have not been achieved. Here, we introduce ARRIVE 2.0. The guidelines have been updated and information reorganised to facilitate their use in practice. We used a Delphi exercise to prioritise and divide the items of the guidelines into 2 sets, the "ARRIVE Essential 10," which constitutes the minimum requirement, and the "Recommended Set," which describes the research context. This division facilitates improved reporting of animal research by supporting a stepwise approach to implementation. This helps journal editors and reviewers verify that the most important items are being reported in manuscripts. We have also developed the accompanying Explanation and Elaboration document, which serves (1) to explain the rationale behind each item in the guidelines, (2) to clarify key concepts, and (3) to provide illustrative examples. We aim, through these changes, to help ensure that researchers, reviewers, and journal editors are better equipped to improve the rigour and transparency of the scientific process and thus reproducibility.

13.
Exp Physiol ; 105(9): 1459-1466, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32666546

RESUMO

Reproducible science requires transparent reporting. The ARRIVE guidelines (Animal Research: Reporting of In Vivo Experiments) were originally developed in 2010 to improve the reporting of animal research. They consist of a checklist of information to include in publications describing in vivo experiments to enable others to scrutinise the work adequately, evaluate its methodological rigour, and reproduce the methods and results. Despite considerable levels of endorsement by funders and journals over the years, adherence to the guidelines has been inconsistent, and the anticipated improvements in the quality of reporting in animal research publications have not been achieved. Here, we introduce ARRIVE 2.0. The guidelines have been updated and information reorganised to facilitate their use in practice. We used a Delphi exercise to prioritise and divide the items of the guidelines into 2 sets, the "ARRIVE Essential 10," which constitutes the minimum requirement, and the "Recommended Set," which describes the research context. This division facilitates improved reporting of animal research by supporting a stepwise approach to implementation. This helps journal editors and reviewers verify that the most important items are being reported in manuscripts. We have also developed the accompanying Explanation and Elaboration document, which serves (1) to explain the rationale behind each item in the guidelines, (2) to clarify key concepts, and (3) to provide illustrative examples. We aim, through these changes, to help ensure that researchers, reviewers, and journal editors are better equipped to improve the rigour and transparency of the scientific process and thus reproducibility.


Assuntos
Experimentação Animal/normas , Guias como Assunto , Animais , Lista de Checagem , Reprodutibilidade dos Testes , Projetos de Pesquisa
14.
J Physiol ; 598(18): 3793-3801, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32666574

RESUMO

Reproducible science requires transparent reporting. The ARRIVE guidelines (Animal Research: Reporting of In Vivo Experiments) were originally developed in 2010 to improve the reporting of animal research. They consist of a checklist of information to include in publications describing in vivo experiments to enable others to scrutinise the work adequately, evaluate its methodological rigour, and reproduce the methods and results. Despite considerable levels of endorsement by funders and journals over the years, adherence to the guidelines has been inconsistent, and the anticipated improvements in the quality of reporting in animal research publications have not been achieved. Here, we introduce ARRIVE 2.0. The guidelines have been updated and information reorganised to facilitate their use in practice. We used a Delphi exercise to prioritise and divide the items of the guidelines into 2 sets, the 'ARRIVE Essential 10,' which constitutes the minimum requirement, and the 'Recommended Set,' which describes the research context. This division facilitates improved reporting of animal research by supporting a stepwise approach to implementation. This helps journal editors and reviewers verify that the most important items are being reported in manuscripts. We have also developed the accompanying Explanation and Elaboration document, which serves (1) to explain the rationale behind each item in the guidelines, (2) to clarify key concepts, and (3) to provide illustrative examples. We aim, through these changes, to help ensure that researchers, reviewers, and journal editors are better equipped to improve the rigour and transparency of the scientific process and thus reproducibility.


Assuntos
Experimentação Animal , Animais , Lista de Checagem , Reprodutibilidade dos Testes , Relatório de Pesquisa
15.
BMJ Open Sci ; 4(1): e100115, 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34095516

RESUMO

Reproducible science requires transparent reporting. The ARRIVE guidelines (Animal Research: Reporting of In Vivo Experiments) were originally developed in 2010 to improve the reporting of animal research. They consist of a checklist of information to include in publications describing in vivo experiments to enable others to scrutinise the work adequately, evaluate its methodological rigour and reproduce the methods and results. Despite considerable levels of endorsement by funders and journals over the years, adherence to the guidelines has been inconsistent, and the anticipated improvements in the quality of reporting in animal research publications have not been achieved. Here, we introduce ARRIVE 2.0. The guidelines have been updated and information reorganised to facilitate their use in practice. We used a Delphi exercise to prioritise and divide the items of the guidelines into two sets, the 'ARRIVE Essential 10', which constitutes the minimum requirement, and the 'Recommended Set', which describes the research context. This division facilitates improved reporting of animal research by supporting a stepwise approach to implementation. This helps journal editors and reviewers verify that the most important items are being reported in manuscripts. We have also developed the accompanying Explanation and Elaboration document, which serves (1) to explain the rationale behind each item in the guidelines, (2) to clarify key concepts and (3) to provide illustrative examples. We aim, through these changes, to help ensure that researchers, reviewers and journal editors are better equipped to improve the rigour and transparency of the scientific process and thus reproducibility.

16.
BMJ Open Sci ; 4(1): e100046, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-35047688

RESUMO

Over the last two decades, awareness of the negative repercussions of flaws in the planning, conduct and reporting of preclinical research involving experimental animals has been growing. Several initiatives have set out to increase transparency and internal validity of preclinical studies, mostly publishing expert consensus and experience. While many of the points raised in these various guidelines are identical or similar, they differ in detail and rigour. Most of them focus on reporting, only few of them cover the planning and conduct of studies. The aim of this systematic review is to identify existing experimental design, conduct, analysis and reporting guidelines relating to preclinical animal research. A systematic search in PubMed, Embase and Web of Science retrieved 13 863 unique results. After screening these on title and abstract, 613 papers entered the full-text assessment stage, from which 60 papers were retained. From these, we extracted unique 58 recommendations on the planning, conduct and reporting of preclinical animal studies. Sample size calculations, adequate statistical methods, concealed and randomised allocation of animals to treatment, blinded outcome assessment and recording of animal flow through the experiment were recommended in more than half of the publications. While we consider these recommendations to be valuable, there is a striking lack of experimental evidence on their importance and relative effect on experiments and effect sizes.

17.
Handb Exp Pharmacol ; 257: 367-382, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31541324

RESUMO

Animal care and use play a pivotal role in the research process. Ethical concerns on the use of animals in research have promoted the creation of a legal framework in many geographical areas that researchers must comply with, and professional organizations continuously develop recommendations on specific areas of laboratory animal science. Scientific evidence demonstrates that many aspects of animal care and use which are beyond the legal requirements have direct impact on research results. Therefore, the review and oversight of animal care and use programs are essential to identify, define, control, and improve all of these aspects to promote the reproducibility, validity, and translatability of animal-based research outcomes. In this chapter, we summarize the ethical principles driving legislation and recommendations on animal care and use, as well as some of these laws and international recommendations. Examples of the impact of specific animal care and use aspects on research, as well as systems of internal and external oversight of animal care and use programs, are described.


Assuntos
Experimentação Animal/ética , Animais , Ética em Pesquisa , Reprodutibilidade dos Testes
18.
Eur Neuropsychopharmacol ; 29(12): 1312-1320, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31753777

RESUMO

Both positive and negative (null or neutral) results are essential for the progress of science and its self-correcting nature. However, there is general reluctance to publish negative results, and this may be due a range of factors (e.g., the widely held perception that negative results are more difficult to publish, the preference to publish positive findings that are more likely to generate citations and funding for additional research). It is particularly challenging to disclose negative results that are not consistent with previously published positive data, especially if the initial publication appeared in a high impact journal. Ideally, there should be both incentives and support to reduce the costs associated with investing efforts into preparing publications with negative results. We describe here a set of criteria that can help scientists, reviewers and editors to publish technically sound, scientifically high-impact negative (or null) results originating from rigorously designed and executed studies. Proposed criteria emphasize the importance of collaborative efforts and communication among scientists (also including the authors of original publications with positive results).


Assuntos
Resultados Negativos/normas , Revisão da Pesquisa por Pares/normas , Publicações Periódicas como Assunto/normas , Humanos , Revisão da Pesquisa por Pares/métodos
20.
BMJ Open Sci ; 2(1): e000004, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-35047676

RESUMO

OBJECTIVE: Within the last years, there has been growing awareness of the negative repercussions of unstandardized planning, conduct and reporting of preclinical and biomedical research. Several initiatives have set the aim of increasing validity and reliability in reporting of studies and publications, and publishers have formed similar groups. Additionally, several groups of experts across the biomedical spectrum have published experience and opinion-based guidelines and guidance on potential standardized reporting. While all these guidelines cover reporting of experiments, an important step prior to this should be rigours planning and conduction of studies. The aim of this systematic review is to identify and harmonize existing experimental design, conduct and analysis guidelines relating to internal validity and reproducibility of preclinical animal research. The review will also identify literature describing risks of bias pertaining to the design, conduct and analysis of preclinical biomedical research. SEARCH STRATEGY: PubMed, Embase and Web of Science will be searched systematically to identify guidelines published in English language in peer-reviewed journals before January 2018 (box 1). All articles or systematic reviews in English language that describe or review guidelines on the internal validity and reproducibility of animal studies will be included. Google search for guidelines published on the websites of major funders and professional organisations can be found in (Box 2). SCREENING AND ANNOTATION: Unique references will be screened in two phases: screening for eligibility based on title and abstract, followed by screening for definitive inclusion based on full text. Screening will be performed in SyRF (http://syrf.org.uk). Each reference will be randomly presented to two independent reviewers. Disagreements between reviewers will be resolved by additional screening of the reference by a third, senior researcher. DATA MANAGEMENT AND REPORTING: All data, including extracted text and guidelines, will be stored in the SyRF platform. Elements of the included guidelines will be identified using a standardized extraction form. Reporting will follow the PRISMA guidelines as far as applicable.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...