Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(24)2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38139304

RESUMO

Thiadiazole derivatives have garnered significant attention in the field of medicinal chemistry due to their diverse pharmacological activities, including anticancer properties. This article presents the synthesis of a series of thiadiazole derivatives and investigates their chemical characterization and potential anticancer effects on various cell lines. The results of the nuclear magnetic resonance (NMR) analyses confirmed the successful formation of the target compounds. The anticancer potential was evaluated through in silico and in vitro cell-based assays using LoVo and MCF-7 cancer lines. The assays included cell viability, proliferation, apoptosis, and cell cycle analysis to assess the compounds' effects on cancer cell growth and survival. Daphnia magna was used as an invertebrate model for the toxicity evaluation of the compounds. The results revealed promising anticancer activity for several of the synthesized derivatives, suggesting their potential as lead compounds for further drug development. The novel compound 2g, 5-[2-(benzenesulfonylmethyl)phenyl]-1,3,4-thiadiazol-2-amine, demonstrated good anti-proliferative effects, exhibiting an IC50 value of 2.44 µM against LoVo and 23.29 µM against MCF-7 after a 48-h incubation and little toxic effects in the Daphnia test.


Assuntos
Antineoplásicos , Tiadiazóis , Estrutura Molecular , Relação Estrutura-Atividade , Antineoplásicos/química , Tiadiazóis/química , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Linhagem Celular Tumoral
2.
Pharmaceuticals (Basel) ; 14(5)2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-34066442

RESUMO

In order to develop novel chemotherapeutic agents with potent anticancer activities, a series of new 2,5-diaryl/heteroaryl-1,3,4-oxadiazoles were designed and synthesized. The structures of the new compounds were established using elemental analyses, IR and NMR spectral data. The compounds were evaluated for their anticancer potential on two standardized human cell lines, HT-29 (colon adenocarcinoma) and MDA-MB-231 (breast adenocarcinoma). Cytotoxicity was measured by MTS assay, while cell cycle arrest and apoptosis assays were conducted using a flow cytometer, the results showing that the cell line MDA-MB-231 is more sensitive to the compounds' action. The results of the predictive studies using the PASS application and the structural similarity analysis indicated STAT3 and miR-21 as the most probable pharmacological targets for the new compounds. The promising effect of compound 3e, 2-[2-(phenylsulfanylmethyl)phenyl]-5-(4-pyridyl)-1,3,4-oxadiazole, especially on the MDA-MB-231 cell line motivates future studies to improve the anticancer profile and to reduce the toxicological risks. It is worth noting that 3e produced a low toxic effect in the D. magna 24 h assay and the predictive studies on rat acute toxicity suggest a low degree of toxic risks.

3.
Sci Pharm ; 79(4): 749-61, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22145103

RESUMO

A series of dibenzo[b,e]ox(thi)epin-11(6H)-one O-benzoyloximes has been synthesized and structurally elucidated by means of IR, (1)H-NMR, (13)C-NMR, MS, and elemental analysis. The newly developed compounds were screened at concentrations of 200-25 µg/mL for their antibacterial activity against Gram+ve organisms such as Methicillin-Resistant Staphylococcus Aureus (MRSA), Gram-ve organisms such as Escherichia coli (E. coli), and at the same concentration range for their antifungal activity against fungal strain Aspergillus niger (A. niger) by the cup plate method. Ofloxacin and ketoconazole (10 µg/mL) were used as reference standards for antibacterial and antifungal activity, respectively. The dibenzo[b,e]oxepines 6a-c and 6e-h showed low antimicrobial activity (MIC 125-200 µg/mL) compared to the reference substances, whereas a major improvement (MIC 50-75 µg/mL) was achieved with the synthesis of the corresponding bromomethyl derivative 6d. Moreover, replacement of oxygen by its bioisosteric sulfur led to isomeric dibenzo[b,e]thi-epine derivatives 6g,h which significantly exhibited higher antimicrobial activity (MIC 25-50 µg/mL) against all tested culture strains used in the present study, demonstrating that a change of chemical class from dibenzo[b,e]oxepine to dibenzo[b,e]thiepine significantly improves the antimicrobial activity. Further variation, such as the oxidation of the thiepine sulfur to the corresponding isomeric dibenzo[b,e]thiepine 5,5-dioxide derivative 9, comparatively failed to exhibit high activity (MIC 200 µg/mL) against S. aureus, E. coli or A. niger.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA