Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Astrobiol ; 22(4): 247-271, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38046673

RESUMO

Viruses are the most numerically abundant biological entities on Earth. As ubiquitous replicators of molecular information and agents of community change, viruses have potent effects on the life on Earth, and may play a critical role in human spaceflight, for life-detection missions to other planetary bodies and planetary protection. However, major knowledge gaps constrain our understanding of the Earth's virosphere: (1) the role viruses play in biogeochemical cycles, (2) the origin(s) of viruses and (3) the involvement of viruses in the evolution, distribution and persistence of life. As viruses are the only replicators that span all known types of nucleic acids, an expanded experimental and theoretical toolbox built for Earth's viruses will be pivotal for detecting and understanding life on Earth and beyond. Only by filling in these knowledge and technical gaps we will obtain an inclusive assessment of how to distinguish and detect life on other planetary surfaces. Meanwhile, space exploration requires life-support systems for the needs of humans, plants and their microbial inhabitants. Viral effects on microbes and plants are essential for Earth's biosphere and human health, but virus-host interactions in spaceflight are poorly understood. Viral relationships with their hosts respond to environmental changes in complex ways which are difficult to predict by extrapolating from Earth-based proxies. These relationships should be studied in space to fully understand how spaceflight will modulate viral impacts on human health and life-support systems, including microbiomes. In this review, we address key questions that must be examined to incorporate viruses into Earth system models, life-support systems and life detection. Tackling these questions will benefit our efforts to develop planetary protection protocols and further our understanding of viruses in astrobiology.

2.
PLoS Pathog ; 19(6): e1011418, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37285383

RESUMO

It has been 49 years since the last discovery of a new virus family in the model yeast Saccharomyces cerevisiae. A large-scale screen to determine the diversity of double-stranded RNA (dsRNA) viruses in S. cerevisiae has identified multiple novel viruses from the family Partitiviridae that have been previously shown to infect plants, fungi, protozoans, and insects. Most S. cerevisiae partitiviruses (ScPVs) are associated with strains of yeasts isolated from coffee and cacao beans. The presence of partitiviruses was confirmed by sequencing the viral dsRNAs and purifying and visualizing isometric, non-enveloped viral particles. ScPVs have a typical bipartite genome encoding an RNA-dependent RNA polymerase (RdRP) and a coat protein (CP). Phylogenetic analysis of ScPVs identified three species of ScPV, which are most closely related to viruses of the genus Cryspovirus from the mammalian pathogenic protozoan Cryptosporidium parvum. Molecular modeling of the ScPV RdRP revealed a conserved tertiary structure and catalytic site organization when compared to the RdRPs of the Picornaviridae. The ScPV CP is the smallest so far identified in the Partitiviridae and has structural homology with the CP of other partitiviruses but likely lacks a protrusion domain that is a conspicuous feature of other partitivirus particles. ScPVs were stably maintained during laboratory growth and were successfully transferred to haploid progeny after sporulation, which provides future opportunities to study partitivirus-host interactions using the powerful genetic tools available for the model organism S. cerevisiae.


Assuntos
Criptosporidiose , Cryptosporidium , Micovírus , Vírus de RNA , Animais , Saccharomyces cerevisiae/genética , RNA Viral/genética , Filogenia , Criptosporidiose/genética , Vírus de RNA de Cadeia Dupla , RNA Polimerase Dependente de RNA/genética , Genoma Viral , RNA de Cadeia Dupla , Mamíferos
3.
Microbiol Resour Announc ; 12(1): e0112322, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36453926

RESUMO

Iterons are short, repeated DNA sequences that are important for the replication of circular single-stranded DNA viruses. No tools that can reliably predict iterons are currently available. The CRUcivirus Iteron SEarch (CRUISE) tool is a computational tool that identifies iteron candidates near stem-loop structures in viral genomes.

4.
Arch Virol ; 166(11): 3239-3244, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34417873

RESUMO

In this article, we - the Bacterial Viruses Subcommittee and the Archaeal Viruses Subcommittee of the International Committee on Taxonomy of Viruses (ICTV) - summarise the results of our activities for the period March 2020 - March 2021. We report the division of the former Bacterial and Archaeal Viruses Subcommittee in two separate Subcommittees, welcome new members, a new Subcommittee Chair and Vice Chair, and give an overview of the new taxa that were proposed in 2020, approved by the Executive Committee and ratified by vote in 2021. In particular, a new realm, three orders, 15 families, 31 subfamilies, 734 genera and 1845 species were newly created or redefined (moved/promoted).


Assuntos
Vírus de Archaea/classificação , Bacteriófagos/classificação , Sociedades Científicas/organização & administração , Archaea/virologia , Bactérias/virologia
5.
Microbiol Resour Announc ; 10(26): e0042421, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34197205

RESUMO

Nucleic acid secondary structures play important roles in regulating biological processes. StemLoop-Finder is a computational tool to recognize and annotate conserved structural motifs in large data sets. The program is optimized for the detection of stem-loop structures that may serve as origins of replication in circular replication-associated protein (Rep)-encoding single-stranded (CRESS) DNA viruses.

6.
mBio ; 11(5)2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32873755

RESUMO

The discovery of cruciviruses revealed the most explicit example of a common protein homologue between DNA and RNA viruses to date. Cruciviruses are a novel group of circular Rep-encoding single-stranded DNA (ssDNA) (CRESS-DNA) viruses that encode capsid proteins that are most closely related to those encoded by RNA viruses in the family Tombusviridae The apparent chimeric nature of the two core proteins encoded by crucivirus genomes suggests horizontal gene transfer of capsid genes between DNA and RNA viruses. Here, we identified and characterized 451 new crucivirus genomes and 10 capsid-encoding circular genetic elements through de novo assembly and mining of metagenomic data. These genomes are highly diverse, as demonstrated by sequence comparisons and phylogenetic analysis of subsets of the protein sequences they encode. Most of the variation is reflected in the replication-associated protein (Rep) sequences, and much of the sequence diversity appears to be due to recombination. Our results suggest that recombination tends to occur more frequently among groups of cruciviruses with relatively similar capsid proteins and that the exchange of Rep protein domains between cruciviruses is rarer than intergenic recombination. Additionally, we suggest members of the stramenopiles/alveolates/Rhizaria supergroup as possible crucivirus hosts. Altogether, we provide a comprehensive and descriptive characterization of cruciviruses.IMPORTANCE Viruses are the most abundant biological entities on Earth. In addition to their impact on animal and plant health, viruses have important roles in ecosystem dynamics as well as in the evolution of the biosphere. Circular Rep-encoding single-stranded (CRESS) DNA viruses are ubiquitous in nature, many are agriculturally important, and they appear to have multiple origins from prokaryotic plasmids. A subset of CRESS-DNA viruses, the cruciviruses, have homologues of capsid proteins encoded by RNA viruses. The genetic structure of cruciviruses attests to the transfer of capsid genes between disparate groups of viruses. However, the evolutionary history of cruciviruses is still unclear. By collecting and analyzing cruciviral sequence data, we provide a deeper insight into the evolutionary intricacies of cruciviruses. Our results reveal an unexpected diversity of this virus group, with frequent recombination as an important determinant of variability.


Assuntos
Vírus de DNA/classificação , Mineração de Dados , Genoma Viral , Metagenoma , Proteínas do Capsídeo/genética , Vírus de DNA/genética , Metagenômica , Vírus de RNA/classificação , Vírus de RNA/genética , Tombusviridae/classificação , Tombusviridae/genética
7.
Microbiol Resour Announc ; 9(36)2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32883786

RESUMO

Microbiology Resource Announcements (MRA) provides peer-reviewed announcements of scientific resources for the microbial research community. We describe the best practices for writing an announcement that ensures that these publications are truly useful resources. Adhering to these best practices can lead to successful publication without the need for extensive revisions.

8.
J Bacteriol ; 202(8)2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-32041795

RESUMO

Archaeosine (G+) is a structurally complex modified nucleoside found quasi-universally in the tRNA of Archaea and located at position 15 in the dihydrouridine loop, a site not modified in any tRNA outside the Archaea G+ is characterized by an unusual 7-deazaguanosine core structure with a formamidine group at the 7-position. The location of G+ at position 15, coupled with its novel molecular structure, led to a hypothesis that G+ stabilizes tRNA tertiary structure through several distinct mechanisms. To test whether G+ contributes to tRNA stability and define the biological role of G+, we investigated the consequences of introducing targeted mutations that disrupt the biosynthesis of G+ into the genome of the hyperthermophilic archaeon Thermococcus kodakarensis and the mesophilic archaeon Methanosarcina mazei, resulting in modification of the tRNA with the G+ precursor 7-cyano-7-deazaguansine (preQ0) (deletion of arcS) or no modification at position 15 (deletion of tgtA). Assays of tRNA stability from in vitro-prepared and enzymatically modified tRNA transcripts, as well as tRNA isolated from the T. kodakarensis mutant strains, demonstrate that G+ at position 15 imparts stability to tRNAs that varies depending on the overall modification state of the tRNA and the concentration of magnesium chloride and that when absent results in profound deficiencies in the thermophily of T. kodakarensisIMPORTANCE Archaeosine is ubiquitous in archaeal tRNA, where it is located at position 15. Based on its molecular structure, it was proposed to stabilize tRNA, and we show that loss of archaeosine in Thermococcus kodakarensis results in a strong temperature-sensitive phenotype, while there is no detectable phenotype when it is lost in Methanosarcina mazei Measurements of tRNA stability show that archaeosine stabilizes the tRNA structure but that this effect is much greater when it is present in otherwise unmodified tRNA transcripts than in the context of fully modified tRNA, suggesting that it may be especially important during the early stages of tRNA processing and maturation in thermophiles. Our results demonstrate how small changes in the stability of structural RNAs can be manifested in significant biological-fitness changes.


Assuntos
Guanosina/análogos & derivados , Methanosarcina/metabolismo , RNA Arqueal/genética , RNA de Transferência/genética , Thermococcus/metabolismo , Guanosina/metabolismo , Methanosarcina/química , Methanosarcina/genética , Estabilidade de RNA , RNA Arqueal/química , RNA Arqueal/metabolismo , RNA de Transferência/química , RNA de Transferência/metabolismo , Thermococcus/química , Thermococcus/genética
9.
Microbiol Resour Announc ; 8(23)2019 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-31171623

RESUMO

Cruciviruses are single-stranded DNA (ssDNA) viruses whose genomes suggest the possibility of gene transfer between DNA and RNA viruses. Many crucivirus genome sequences have been found in metagenomic data sets, although no crucivirus has been isolated. Here, we present the complete genome sequences of three cruciviruses recovered from environmental samples from Oregon.

10.
Virus Evol ; 4(2): vey022, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30094064

RESUMO

Viruses that infect thermophilic Archaea are unique in both their structure and genetic makeup. The lemon-shaped fuselloviruses-which infect members of the order Sulfolobales, growing optimally at 80 °C and pH 3-are some of the most ubiquitous and best studied viruses of the thermoacidophilic Archaea. Nonetheless, much remains to be learned about these viruses. In order to investigate fusellovirus evolution, we have isolated and characterized a novel fusellovirus, Sulfolobus spindle-shaped virus 10 (formerly SSV-L1). Comparative genomic analyses highlight significant similarity with both SSV8 and SSV9, as well as conservation of promoter elements within the Fuselloviridae. SSV10 encodes five ORFs with no homology within or outside of the Fuselloviridae, as well as a putatively functional Cas4-like ORF, which may play a role in evading CRISPR-mediated host defenses. Moreover, we demonstrate the ability of SSV10 to withstand mutation in a fashion consistent with mutagenesis in SSV1.

11.
Viruses ; 10(7)2018 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-29986376

RESUMO

Recombination between and within virus genomes is being increasingly recognized as a majordriver of virus evolution.


Assuntos
Recombinação Genética , Viroses/virologia , Vírus/genética , Animais , Ecologia , Evolução Molecular , Humanos
12.
Int J Syst Evol Microbiol ; 68(6): 1907-1913, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29671720

RESUMO

A novel hyperthermophilic, acidophilic and facultatively anaerobic archaeon, strain KD-1T, was isolated from an acidic hot spring in Indonesia and characterized with the phylogenetically related species Sulfurisphaera ohwakuensis Kurosawa et al. 1998, Sulfolobus tokodaii Suzuki et al., 2002 and Sulfolobus yangmingensis Jan et al. 1999. Cells of KD-1T were irregular cocci with diameters of 0.9-1.3 µm. The strain grew at 60-90 °C (optimum 80-85 °C), pH 2.5-6.0 (optimum pH 3.5-4.0) and 0-1.0 % (w/v) NaCl concentration. KD-1T grew anaerobically in the presence of S0 (headspace: H2/CO2) and FeCl3 (headspace: N2). Under aerobic conditions, chemolithoautotrophic growth occurred on S0, pyrite, K2S4O6, Na2S2O3 and H2. This strain utilized various complex substrates, such as yeast extract, but did not grow on sugars and amino acids as the sole carbon source. The main core lipids were calditoglycerocaldarchaeol and caldarchaeol. The DNA G+C content was 30.6 mol%. Analyses of phylogenetic trees based on 16S rRNA and 23S rRNA genes indicated that KD-1T formed an independent lineage near Sulfurisphaera ohwakuensis TA-1T, Sulfolobus tokodaii 7T and Sulfolobus yangmingensis YM1T. On the basis of the results of morphological, physiological, chemotaxonomic and phylogenetic analyses, KD-1T represents a novel species of the genus Sulfurisphaera Kurosawa et al. 1998, for which the name Sulfurisphaera javensis sp. nov. is proposed. The type strain is KD-1T (=JCM 32117T=InaCC Ar81T). Based on the data, we also propose the reclassification of Sulfolobus tokodaii Suzuki et al., 2002 as Sulfurisphaera tokodaii comb. nov. (type strain 7T=JCM 10545T=DSM 16993T).


Assuntos
Fontes Termais/microbiologia , Filogenia , Sulfolobaceae/classificação , Composição de Bases , Crescimento Quimioautotrófico , DNA Arqueal/genética , Indonésia , Lipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Sulfolobaceae/genética , Sulfolobaceae/isolamento & purificação , Sulfolobus
13.
Astrobiology ; 18(2): 207-223, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29319335

RESUMO

Viruses are the most abundant biological entities on modern Earth. They are highly diverse both in structure and genomic sequence, play critical roles in evolution, strongly influence terran biogeochemistry, and are believed to have played important roles in the origin and evolution of life. However, there is yet very little focus on viruses in astrobiology. Viruses arguably have coexisted with cellular life-forms since the earliest stages of life, may have been directly involved therein, and have profoundly influenced cellular evolution. Viruses are the only entities on modern Earth to use either RNA or DNA in both single- and double-stranded forms for their genetic material and thus may provide a model for the putative RNA-protein world. With this review, we hope to inspire integration of virus research into astrobiology and also point out pressing unanswered questions in astrovirology, particularly regarding the detection of virus biosignatures and whether viruses could be spread extraterrestrially. We present basic virology principles, an inclusive definition of viruses, review current virology research pertinent to astrobiology, and propose ideas for future astrovirology research foci. Key Words: Astrobiology-Virology-Biosignatures-Origin of life-Roadmap. Astrobiology 18, 207-223.


Assuntos
Exobiologia/métodos , Meio Ambiente Extraterreno , Planetas , Virologia/métodos , Vírus , Exobiologia/história , História do Século XXI , Virologia/história
14.
J Virol ; 91(10)2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28148789

RESUMO

Viruses infecting the Archaea harbor a tremendous amount of genetic diversity. This is especially true for the spindle-shaped viruses of the family Fuselloviridae, where >90% of the viral genes do not have detectable homologs in public databases. This significantly limits our ability to elucidate the role of viral proteins in the infection cycle. To address this, we have developed genetic techniques to study the well-characterized fusellovirus Sulfolobus spindle-shaped virus 1 (SSV1), which infects Sulfolobus solfataricus in volcanic hot springs at 80°C and pH 3. Here, we present a new comparative genome analysis and a thorough genetic analysis of SSV1 using both specific and random mutagenesis and thereby generate mutations in all open reading frames. We demonstrate that almost half of the SSV1 genes are not essential for infectivity, and the requirement for a particular gene correlates well with its degree of conservation within the Fuselloviridae The major capsid gene vp1 is essential for SSV1 infectivity. However, the universally conserved minor capsid gene vp3 could be deleted without a loss in infectivity and results in virions with abnormal morphology.IMPORTANCE Most of the putative genes in the spindle-shaped archaeal hyperthermophile fuselloviruses have no sequences that are clearly similar to characterized genes. In order to determine which of these SSV genes are important for function, we disrupted all of the putative genes in the prototypical fusellovirus, SSV1. Surprisingly, about half of the genes could be disrupted without destroying virus function. Even deletions of one of the known structural protein genes that is present in all known fuselloviruses, vp3, allows the production of infectious viruses. However, viruses lacking vp3 have abnormal shapes, indicating that the vp3 gene is important for virus structure. Identification of essential genes will allow focused research on minimal SSV genomes and further understanding of the structure of these unique, ubiquitous, and extremely stable archaeal viruses.


Assuntos
Proteínas do Capsídeo/genética , Fuselloviridae/genética , Sulfolobus/virologia , Montagem de Vírus , Fuselloviridae/metabolismo , Genoma Viral , Fontes Termais , Mutação , Sulfolobus/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo , Vírion/genética
15.
J Virol Methods ; 242: 14-21, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28042018

RESUMO

Characterizing virus-host relationships is critical for understanding the impact of a virus on an ecosystem, but is challenging with existing techniques, particularly for uncultivable species. We present a general, cultivation-free approach for identifying phage-associated bacterial cells. Using PCR-activated cell sorting, we interrogate millions of individual bacteria for the presence of specific phage nucleic acids. If the nucleic acids are present, the bacteria are recovered via sorting and their genomes analyzed. This allows targeted recovery of all possible host species in a diverse population associated with a specific phage, and can be easily targeted to identify the hosts of different phages by modifying the PCR primers used for detection. Moreover, this technique allows quantification of free phage particles, as benchmarked against the "gold standard" of virus enumeration, the plaque assay.


Assuntos
Bactérias/isolamento & purificação , Bactérias/virologia , Bacteriófagos/isolamento & purificação , Reação em Cadeia da Polimerase/métodos , Técnicas Bacteriológicas , Bacteriófagos/genética , Especificidade de Hospedeiro , Microfluídica
16.
Genes (Basel) ; 8(12)2017 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-29292729

RESUMO

Viruses with spindle or lemon-shaped virions are rare in the world of viruses, but are common in viruses of archaeal extremophiles, possibly due to the extreme conditions in which they thrive. However, the structural and genetic basis for the unique spindle shape is unknown. The best-studied spindle-shaped virus, Sulfolobus Spindle-shaped Virus 1 (SSV1), is composed mostly of the major capsid protein VP1. Similar to many other viruses, proteolytic cleavage of VP1 is thought to be critical for virion formation. Unlike half of the genes in SSV1, including the minor capsid protein gene VP3, the VP1 gene does not tolerate deletion or transposon insertion. To determine the role of the VP1 gene and its proteolysis for virus function, we developed techniques for site-directed mutagenesis of the SSV1 genome and complemented deletion mutants with VP1 genes from other SSVs. By analyzing these mutants, we demonstrate that the N-terminus of the VP1 protein is required, but the N-terminus, or entire SSV1 VP1 protein, can be exchanged with VP1s from other SSVs. However, the conserved glutamate at the cleavage site is not essential for infectivity. Interestingly, viruses containing point mutations at this position generate mostly abnormal virions.

17.
Virol J ; 13(1): 201, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27906039

RESUMO

BACKGROUND: Viruses are incredibly diverse organisms and impact all forms of life on Earth; however, individual virions are challenging to study due to their small size and mass, precluding almost all direct imaging or molecular analysis. Moreover, like microbes, the overwhelming majority of viruses cannot be cultured, impeding isolation, replication, and study of interesting new species. Here, we introduce PCR-activated virus sorting, a method to isolate specific viruses from a heterogeneous population. Specific sorting opens new avenues in the study of uncultivable viruses, including recovering the full genomes of viruses based on genetic fragments in metagenomes, or identifying the hosts of viruses. METHODS: PAVS enables specific sorting of viruses with flow cytometry. A sample containing a virus population is processed through a microfluidic device to encapsulate it into droplets, such that the droplets contain different viruses from the sample. TaqMan PCR reagents are also included targeting specific virus species such that, upon thermal cycling, droplets containing the species become fluorescent. The target viruses are then recovered via droplet sorting. The recovered virus genomes can then be analyzed with qPCR and next generation sequencing. RESULTS AND CONCLUSIONS: We describe the PAVS workflow and demonstrate its specificity for identifying target viruses in a heterogeneous population. In addition, we demonstrate recovery of the target viruses via droplet sorting and analysis of their nucleic acids with qPCR.


Assuntos
Citometria de Fluxo/métodos , Metagenômica/métodos , Reação em Cadeia da Polimerase/métodos , Virologia/métodos , Vírus/classificação , Vírus/isolamento & purificação , Humanos , Dispositivos Lab-On-A-Chip , Vírus/genética
18.
Integr Comp Biol ; 56(4): 493-9, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27471225

RESUMO

Life persists, even under extremely harsh conditions. While the existence of extremophiles is well known, the mechanisms by which these organisms evolve, perform basic metabolic functions, reproduce, and survive under extreme physical stress are often entirely unknown. Recent technological advances in terms of both sampling and studying extremophiles have yielded new insight into their evolution, physiology and behavior, from microbes and viruses to plants to eukaryotes. The goal of the "Life on the Edge-the Biology of Organisms Inhabiting Extreme Environments" symposium was to unite researchers from taxonomically and methodologically diverse backgrounds to highlight new advances in extremophile biology. Common themes and new insight that emerged from the symposium included the important role of symbiotic associations, the continued challenges associated with sampling and studying extremophiles and the important role these organisms play in terms of studying climate change. As we continue to explore our planet, especially in difficult to reach areas from the poles to the deep sea, we expect to continue to discover new and extreme circumstances under which life can persist.


Assuntos
Ambientes Extremos , Evolução Biológica , Mudança Climática
19.
J Mol Evol ; 83(1-2): 38-49, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27383372

RESUMO

The Microviridae are increasingly becoming recognized as one of the most globally ubiquitous and highly diverse virus families, and as such, provide an advantageous model for studying virus evolution and adaptation. Here, we utilize microvirus sequences from diverse physiochemical environments, including novel sequences from a high-temperature acidic lake, to chart the outcome of natural selection in the main structural protein of the virus. Each icosahedral microvirus virion is composed of sixty identical capsid proteins that interact along twofold, threefold and fivefold symmetry axis interfaces to encapsidate a small, circular, single-stranded DNA genome. Viable assembly of the virus is guided by scaffolding proteins, which coordinate inter-subunit contacts between the capsid proteins. Structure-based analysis indicates that amino acid sequence conservation is predominantly localized to the twofold axis interface. While preservation of this quaternary interface appears to be essential, tertiary and secondary structural features of the capsid protein are permissive to considerable sequence variation.


Assuntos
Proteínas do Capsídeo/genética , Microvirus/genética , Análise de Sequência de DNA/métodos , Sequência de Aminoácidos , Capsídeo/fisiologia , DNA de Cadeia Simples , Evolução Molecular , Variação Genética , Microviridae/genética , Modelos Moleculares , Vírion/genética
20.
Annu Rev Virol ; 2(1): 203-17, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26958913

RESUMO

Viruses are notorious for rapidly exchanging genetic information between close relatives and with the host cells they infect. This exchange has profound effects on the nature and rapidity of virus and host evolution. Recombination between dsDNA viruses is common, as is genetic exchange between dsDNA viruses or retroviruses and host genomes. Recombination between RNA virus genomes is also well known. In contrast, genetic exchange across viral kingdoms, for instance between nonretroviral RNA viruses or ssDNA viruses and host genomes or between RNA and DNA viruses, was previously thought to be practically nonexistent. However, there is now growing evidence for both RNA and ssDNA viruses recombining with host dsDNA genomes and, more surprisingly, RNA virus genes recombining with ssDNA virus genomes. Mechanisms are still unclear, but this deep recombination greatly expands the breadth of virus evolution and confounds virus taxonomy.


Assuntos
Infecções por Vírus de DNA/genética , Infecções por Vírus de DNA/virologia , Vírus de DNA/genética , DNA Viral/genética , Vírus de RNA/genética , RNA Viral/genética , Recombinação Genética , Animais , Vírus de DNA/fisiologia , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , DNA Viral/metabolismo , Humanos , Vírus de RNA/fisiologia , RNA Viral/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...