Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biochem Parasitol ; 254: 111552, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36731750

RESUMO

Multiple parasite lineages with different proliferation rates or fitness may coexist within a clinical malaria isolate, resulting in complex growth interactions and variations in phenotype. To elucidate the dynamics of parasite growth in multiclonal isolates, we measured growth rates (GRs) of three Plasmodium falciparum Cambodian isolates, including IPC_3445 (MRA-1236), IPC_5202 (MRA-1240), IPC_6403 (MRA-1285), and parasite lineages previously cloned from each of these isolates by limiting dilution. Following synchronization, in vitro cultures of each parasite line were maintained over four consecutive asexual cycles (192 h), with thin smears prepared at each 48-h cycle to estimate GR and fold change in parasitemia (FCP). Cell cycle time (CCT), the duration it takes for ring-stage parasites to develop into mature schizonts, was measured by monitoring the development of 0-3-h post-invasion rings for up to 52 h post-incubation. Laboratory lines 3D7 (MRA-102) and Dd2 (MRA-150) were used as controls. Significant differences in GR, FCP, and CCT were observed between parasite isolates and clonal lineages from each isolate. The parasite lines studied here have well-defined growth phenotypes and will facilitate basic malaria research and development of novel malaria interventions. These lines are available to malaria researchers through the MR4 collection of NIAID's BEI Resources Program.


Assuntos
Malária Falciparum , Malária , Parasitos , Animais , Plasmodium falciparum/genética , Malária Falciparum/parasitologia , Fenótipo
2.
ACS Med Chem Lett ; 13(6): 955-963, 2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35707162

RESUMO

Antibacterial resistance continues its devastation of available therapies. Novel bacterial topoisomerase inhibitors (NBTIs) offer one solution to this critical issue. Two series of amine NBTIs bearing tricyclic DNA-binding moieties as well as amide NBTIs with a bicyclic DNA-binding moiety were synthesized and evaluated against methicillin-resistant Staphylococcus aureus (MRSA). Additionally, these compounds and a series of bicyclic amine analogues displayed high activity against susceptible and drug-resistant Neisseria gonorrhoeae, expanding the spectrum of these dioxane-linked NBTIs.

3.
PLoS One ; 16(8): e0256079, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34415957

RESUMO

Mycobacterium tuberculosis (Mtb) infects one-quarter of the world's population. Mtb and HIV coinfections enhance the comorbidity of tuberculosis (TB) and AIDS, accounting for one-third of all AIDS-associated mortalities. Humoral antibody to Mtb correlates with TB susceptibility, and engineering of Mtb antibodies may lead to new diagnostics and therapeutics. The characterization and validation of functional immunoglobulin (Ig) variable chain (IgV) sequences provide a necessary first step towards developing therapeutic antibodies against pathogens. The virulence-associated Mtb antigens SodA (Superoxide Dismutase), KatG (Catalase), PhoS1/PstS1 (regulatory factor), and GroES (heat shock protein) are potential therapeutic targets but lacked IgV sequence characterization. Putative IgV sequences were identified from the mRNA of hybridomas targeting these antigens and isotype-switched into a common immunoglobulin fragment crystallizable region (Fc region) backbone, subclass IgG2aκ. Antibodies were validated by demonstrating recombinant Ig assembly and secretion, followed by the determination of antigen-binding specificity using ELISA and immunoblot assay.


Assuntos
Região Variável de Imunoglobulina/genética , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/imunologia , Animais , Anticorpos Monoclonais/imunologia , Especificidade de Anticorpos , Antígenos de Bactérias/imunologia , Ensaio de Imunoadsorção Enzimática/métodos , Humanos , Hibridomas/imunologia , Imunoglobulina G , Região Variável de Imunoglobulina/imunologia , Imunoglobulinas/imunologia , Fatores Imunológicos , Testes Imunológicos/métodos , Camundongos , Mycobacterium tuberculosis/patogenicidade , Tuberculose/microbiologia , Fatores de Virulência/genética
4.
Methods Mol Biol ; 2314: 1-58, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34235647

RESUMO

Building upon the foundational research of Robert Koch, who demonstrated the ability to grow Mycobacterium tuberculosis for the first time in 1882 using media made of coagulated bovine serum, microbiologists have continued to develop new and more efficient ways to grow mycobacteria. Presently, all known mycobacterial species can be grown in the laboratory using either axenic culture techniques or in vivo passage in laboratory animals. This chapter provides conventional protocols to grow mycobacteria for diagnostic purposes directly from clinical specimens, as well as in research laboratories for scientific purposes. Detailed protocols used for production of M. tuberculosis in large scale (under normoxic and hypoxic conditions) in bioreactors and for production of obligate intracellular pathogens such as Mycobacterium leprae and "Mycobacterium lepromatosis" using athymic nude mice and armadillos are provided.


Assuntos
Técnicas Bacteriológicas , Infecções por Mycobacterium/microbiologia , Mycobacterium/crescimento & desenvolvimento , Animais , Tatus , Técnicas Bacteriológicas/instrumentação , Reatores Biológicos , Modelos Animais de Doenças , Humanos , Camundongos Nus , Viabilidade Microbiana , Mycobacterium/isolamento & purificação , Mycobacterium leprae/crescimento & desenvolvimento , Mycobacterium leprae/isolamento & purificação , Fatores de Tempo
5.
Pathogens ; 10(6)2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34072726

RESUMO

Powassan virus (POWV) is a tick-borne flavivirus circulating in North America and the Russian Far East that can cause severe neuroinvasive diseases, including encephalitis, meningitis, and meningoencephalitis. The reported neuroinvasive case fatality is about 10%, and approximately 50% of the survivors from the neuroinfection exhibit long-lasting or permanent neurological sequelae. Currently, treatment of POWV infection is supportive, and no FDA-approved vaccines or specific therapeutics are available. A novel Powassan vaccine candidate was created using virus-like particle technology (POW-VLP) and assembled with the viral structural proteins pre-Membrane (prM) and Envelope (E). Western blot immunoassay demonstrated high antigenicity of POW-VLP structural proteins. Transmission electron microscopy indicated that the POW-VLP exhibited icosahedral morphology typical of flaviviruses. A dose-escalation study in a murine model was performed to test immunogenicity and safety. Serum antibody was tested by ELISA, demonstrating that POW-VLP afforded 100% seroconversion to the E protein. Reporter viral-particle neutralization assay demonstrated high levels of neutralizing antibodies in the serum of immunized mice. Hybridomas expressing monoclonal antibodies were produced following POW-VLP immunization. The POW-VLP vaccine candidate created in this study provides a strategy for inducing protective antibodies against Powassan neuroinvasive infection.

6.
Expert Rev Vaccines ; 20(11): 1483-1498, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34148481

RESUMO

Introduction: Zika virus disease received little attention until its recent explosive emergence around the globe. The devastating consequences of this pandemic include congenital Zika syndrome (CZS) and the neurological autoimmune disorder Guillain-Barré syndrome. These potential outcomes prompted massive efforts to understand the course of Zika infection and to develop therapeutic and prophylactic strategies for treatment and prevention of disease.Area covered: Preclinical and clinical data demonstrate that a safe and efficacious vaccine for protection against Zika virus infection is possible in the near future. Nevertheless, significant knowledge gaps regarding the outcome of a mass vaccination strategy exist and must be addressed. Zika virus circulates in flavivirus-endemic regions, an ideal Zika vaccine should avoid the potential of antibody-dependent enhancement from exposure to dengue virus. Prevention of CZS is the primary goal for immunization, and the vaccine must provide protection against intrauterine transmission for use during pregnancy and in women of childbearing age. Ideally, a vaccine should also prevent sexual transmission of the virus through mucosal protection.Expert opinion: This review describes current vaccine approaches against Zika virus with particular attention to the application of virus-like particle (VLP) technology as a strategy for solving the challenges of Zika virus immunization.


Assuntos
Vacinas de Partículas Semelhantes a Vírus , Vacinas Virais , Infecção por Zika virus , Zika virus , Feminino , Humanos , Gravidez , Tecnologia , Infecção por Zika virus/prevenção & controle
7.
Int J Parasitol Drugs Drug Resist ; 15: 152-161, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33780700

RESUMO

Natural infections of Plasmodium falciparum, the parasite responsible for the deadliest form of human malaria, often comprise multiple parasite lineages (haplotypes). Multiclonal parasite isolates may exhibit variable phenotypes including different drug susceptibility profiles over time due to the presence of multiple haplotypes. To test this hypothesis, three P. falciparum Cambodian isolates IPC_3445 (MRA-1236), IPC_5202 (MRA-1240) and IPC_6403 (MRA-1285) suspected to be multiclonal were cloned by limiting dilution, and the resulting clones genotyped at 24 highly polymorphic single nucleotide polymorphisms (SNPs). Isolates harbored up to three constituent haplotypes, and exhibited significant variability (p < 0.05) in susceptibility to chloroquine, mefloquine, artemisinin and piperaquine as measured by half maximal drug inhibitory concentration (IC50) assays and parasite survival assays, which measure viability following exposure to pharmacologically relevant concentrations of antimalarial drugs. The IC50 of the most abundant haplotype frequently reflected that of the uncloned parental isolate, suggesting that a single haplotype dominates the antimalarial susceptibility profile and masks the effect of minor frequency haplotypes. These results indicate that phenotypic variability in parasite isolates is often due to the presence of multiple haplotypes. Depending on intended end-use, clinical isolates should be cloned to yield single parasite lineages with well-defined phenotypes and genotypes. The availability of such standardized clonal parasite lineages through NIAID's BEI Resources program will aid research directed towards the development of diagnostics and interventions including drugs against malaria.


Assuntos
Antimaláricos , Malária Falciparum , Malária , Preparações Farmacêuticas , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Dissecação , Resistência a Medicamentos/genética , Haplótipos , Humanos , Malária/tratamento farmacológico , Malária Falciparum/tratamento farmacológico , Fenótipo , Plasmodium falciparum/genética , Proteínas de Protozoários/genética
8.
Cryobiology ; 99: 1-10, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33556359

RESUMO

Mosquito-borne diseases are responsible for millions of human deaths every year, posing a massive burden on global public health. Mosquitoes transmit a variety of bacteria, parasites and viruses. Mosquito control efforts such as insecticide spraying can reduce mosquito populations, but they must be sustained in order to have long term impacts, can result in the evolution of insecticide resistance, are costly, and can have adverse human and environmental effects. Technological advances have allowed genetic manipulation of mosquitoes, including generation of those that are still susceptible to insecticides, which has greatly increased the number of mosquito strains and lines available to the scientific research community. This generates an associated challenge, because rearing and maintaining unique mosquito lines requires time, money and facilities, and long-term maintenance can lead to adaptation to specific laboratory conditions, resulting in mosquito lines that are distinct from their wild-type counterparts. Additionally, continuous rearing of transgenic lines can lead to loss of genetic markers, genes and/or phenotypes. Cryopreservation of valuable mosquito lines could help circumvent these limitations and allow researchers to reduce the cost of rearing multiple lines simultaneously, maintain low passage number transgenic mosquitoes, and bank lines not currently being used. Additionally, mosquito cryopreservation could allow researchers to access the same mosquito lines, limiting the impact of unique laboratory or field conditions. Successful cryopreservation of mosquitoes would expand the field of mosquito research and could ultimately lead to advances that would reduce the burden of mosquito-borne diseases, possibly through rear-and-release strategies to overcome mosquito insecticide resistance. Cryopreservation techniques have been developed for some insect groups, including but not limited to fruit flies, silkworms and other moth species, and honeybees. Recent advances within the cryopreservation field, along with success with other insects suggest that cryopreservation of mosquitoes may be a feasible method for preserving valuable scientific and public health resources. In this review, we will provide an overview of basic mosquito biology, the current state of and advances within insect cryopreservation, and a proposed approach toward cryopreservation of Anopheles stephensi mosquitoes.


Assuntos
Anopheles , Mosquitos Vetores , Animais , Abelhas , Criopreservação/métodos , Humanos , Resistência a Inseticidas/genética , Controle de Mosquitos , Mosquitos Vetores/genética
9.
Biochem Biophys Res Commun ; 529(3): 805-811, 2020 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-32736711

RESUMO

Zika virus (ZIKV) is a mosquito-borne flavivirus associated with Congenital Zika Syndrome (CZS), reflecting a wide range of congenital abnormalities in fetuses and infants infected with ZIKV before birth. ZIKV infections have also been associated with the neurological autoimmune disorder known as Guillian-Barré syndrome (GBS). To date, no vaccines or antiviral strategies are licensed for ZIKV. We used rational design to develop a novel ZIKV vaccine candidate using a Woodchuck Hepatitis core Antigen (WHcAg) Virus-Like Particle (VLP) scaffold for displaying selected antigens from the ZIKV Envelope (E) protein. A Zika-VLP vaccine candidate containing the CD Loop sub-structural domain from ZIKV E protein Domain III (WHcAg CD Loop) elicited a strong immune response in a murine model. Analysis of serum immunoglobulins demonstrated induction of both Th1- and Th2- mediated immune response. No cross-reacting antibodies were detected between Zika, dengue and yellow fever virus, demonstrating a high level of specificity for the ZIKV CD Loop antigen. Immunization with the WHcAg CD Loop vaccine candidate demonstrated immunoprotection in a murine model of ZIKV infection, stimulating protective antibodies associated with antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) activities. The WHcAg CD Loop candidate may represent a safer vaccine for preventing antibody dependent enhancement (ADE).


Assuntos
Vacinas de Partículas Semelhantes a Vírus/uso terapêutico , Proteínas do Envelope Viral/uso terapêutico , Infecção por Zika virus/prevenção & controle , Zika virus/imunologia , Animais , Modelos Animais de Doenças , Feminino , Imunidade , Camundongos , Camundongos Endogâmicos C57BL , Vacinas de Partículas Semelhantes a Vírus/imunologia , Proteínas do Envelope Viral/imunologia , Infecção por Zika virus/imunologia
10.
Trends Parasitol ; 36(4): 321-324, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32035817

RESUMO

BEI Resources has contributed to the advancement of parasitic diseases research for over 16 years. The accessibility of our reference strains and reagents is relevant to the development of new therapeutics and vaccines. Here we provide a resource update with emphasis on the new assets for toxoplasmosis and vector research.


Assuntos
Vetores Artrópodes , Recursos em Saúde/tendências , Parasitos , Parasitologia/métodos , Parasitologia/tendências , Animais
11.
Parasitol Int ; 63(2): 278-84, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24291603

RESUMO

Plasmodium vivax is the most widely distributed human malaria parasite. Despite its importance, both clinical research and basic research have been hampered by lack of a convenient in vitro culture system, in part due to the parasite's infection preference of reticulocytes rather than mature erythrocytes. The use of reticulocyte-producing hematopoietic stem cell culture has been proposed for the maintenance of the parasite, but good numbers of reticulocytes and P. vivax parasites sufficient for practical use in research have been difficult to produce from this system. Here, we report an improved method of hematopoietic stem cell culture for P. vivax infection, which requires less time and produces higher or equivalent percentage of reticulocytes than previously reported systems. Reticulocytes were cultured from cryopreserved erythroblasts that were frozen after 8day-cultivation of purified CD34+ cells from human umbilical cord blood. This method of production allowed the recovery of reticulocytes in a shorter time than with continuous stem cell culture. We obtained a relatively high percentage of peak reticulocyte production by using co-cultivation with a mouse stromal cell line. Using P. vivax mature stage parasites obtained from infected Aotus monkeys, we observed substantial numbers (up to 0.8% of the total number of the cells) of newly invaded reticulocytes 24h after initial cultivation. The addition of fresh reticulocytes after 48h culture, however, did not result in significant increase of second cycle reticulocyte invasion. Assays of invasion inhibition with specific antibodies were successful with this system, demonstrating potential for study of biological processes as well as the conditions necessary for long-term maintenance of P. vivax in vitro.


Assuntos
Eritroblastos/citologia , Plasmodium vivax/citologia , Plasmodium vivax/fisiologia , Reticulócitos/parasitologia , Animais , Aotidae , Técnicas de Cultura de Células , Linhagem Celular , Criopreservação , Humanos , Malária Vivax/parasitologia , Camundongos
12.
Am J Trop Med Hyg ; 84(2): 276-84, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21292899

RESUMO

The malaria vaccine candidate antigens erythrocyte binding antigen 175 (EBA-175), merozoite surface protein 3 (MSP-3), and apical membrane antigen (AMA-1) from Plasmodium falciparum isolates from countries in central and west Africa were assessed for allelic diversity. Samples were collected on filter paper from 600 P. falciparum-infected symptomatic patients in Cameroon, Republic of Congo, Burkina Faso, Ghana, and Senegal and screened for class-specific amplification fragments. Genetic diversity, assessed by mean heterozygosity, was comparable among countries. We detected a clinical increase in eba 175 F-allele frequency from west to east across the study region. No statistical difference in msp-3 allele distribution between countries was observed. The ama-1 3D7 alleles were present at a lower frequency in central Africa than in West Africa. We also detected little to no genetic differentiation among sampling locations. This finding indicates that, at least at the level of resolution offered by restriction fragment length polymorphism analysis, these antigens showed remarkable genetic homogeneity throughout the region sampled, perhaps caused by balancing selection to maintain a diverse array of antigen haplotyes.


Assuntos
Antígenos de Protozoários/genética , Vacinas Antimaláricas/genética , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , África Central , África Ocidental , Alelos , Antígenos de Protozoários/imunologia , DNA de Protozoário/genética , Variação Genética/genética , Heterozigoto , Humanos , Malária Falciparum/genética , Malária Falciparum/parasitologia , Malária Falciparum/prevenção & controle , Plasmodium falciparum/imunologia , Reação em Cadeia da Polimerase , Proteínas de Protozoários/imunologia
13.
Mol Microbiol ; 76(5): 1232-49, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20487267

RESUMO

Toxoplasma is a protozoan parasite proficiently adapted to thrive in a parasitophorous vacuole (PV) formed in the cytoplasm of a large variety of mammalian cells. As an actively dividing organism, the parasite must adjust the lipid composition of its membranes to preserve organelle vitality and expand the size of the PV membrane to accommodate growing progeny. We showed that Toxoplasma takes up host lipids and can expel major lipids in an ATP-dependent process. In order to provide detailed mechanistic insights into lipid trafficking phenomena relevant to Toxoplasma biology, we characterized six parasite ATP-binding cassette (ABC) G family transporters and investigated their potential contribution to lipid homeostatic processes. All these transporters are expressed in the parasite and five of them are upregulated upon exposure to sterols. Four ABCG are localized to secretory organelles and the plasma membrane, and promote cholesterol and phospholipid efflux, reflecting the importance in exportation of large amounts of lipids into the PV. Interestingly, one ABCG that is associated with vesicles in the PV and the plasma membrane acts as a cholesterol importer. This last finding expands our current view on the role of some ABCG transporters in eukaryotic sterol influx.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Metabolismo dos Lipídeos , Isoformas de Proteínas/metabolismo , Proteínas de Protozoários/metabolismo , Toxoplasma/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Sequência de Aminoácidos , Animais , Transporte Biológico/fisiologia , Células COS , Membrana Celular/química , Membrana Celular/metabolismo , Chlorocebus aethiops , Interações Hospedeiro-Parasita , Humanos , Dados de Sequência Molecular , Organismos Geneticamente Modificados , Fosfolipídeos/metabolismo , Isoformas de Proteínas/genética , Proteínas de Protozoários/genética , Alinhamento de Sequência , Esteróis/metabolismo , Toxoplasma/citologia , Toxoplasma/genética
14.
Am J Trop Med Hyg ; 77(6 Suppl): 296-302, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18165506

RESUMO

Malaria is a major public health problem; about half of the world's populations live under exposure. The problem is increasing in magnitude and complexity because it is entwined with low socio-economic status, which makes African women and children particularly vulnerable. Combating malaria therefore requires concerted international efforts with an emphasis on Africa. The Multilateral Initiative on Malaria (MIM) was founded in 1997 to meet that need through strengthening research capacity in Africa, increasing international cooperation and communication, and utilization of research findings to inform malaria prevention, treatment, and control. The review undertaken in 2002 showed that through improved communication and science-focused institutional networks, MIM had brought African scientists together, opened up communication among malaria stakeholders, and provided Internet access to literature. The achievements were made through four autonomous constituents including the coordinating Secretariat being hosted for the first time in Africa by the African Malaria Network Trust (AMANET) for the period 2006-2010. The other constituents are the MIM TDR providing funding for peer-reviewed research; MIMCom facilitating Internet connectivity, access to medical literature, and communication between scientists inside and outside of Africa; and MR4 providing scientists access to research tools, standardized reagents, and protocols. Future plans will mostly consolidate the gains made under the MIM Strategic Plan for the period 2003-2005.


Assuntos
Efeitos Psicossociais da Doença , Malária/terapia , África , Humanos , Cooperação Internacional , Malária/economia , Malária/parasitologia , Malária/prevenção & controle , Pesquisa
15.
Mol Biochem Parasitol ; 144(1): 44-54, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16159678

RESUMO

Folates are key elements in eukaryotic biosynthetic processes. The protozoan parasite Toxoplasma gondii possesses the enzymes necessary for de novo folate synthesis and has been suggested to lack alternative mechanisms for folate acquisition. In this paper, we present a different view by providing evidence that Toxoplasma is capable of salvaging exogenous folates. By monitoring uptake of radiolabeled folates by parasites in axenic conditions, our studies revealed a common folate transporter that has a high affinity for folic acid. Transport of this compound across the parasite plasma membrane is rapid, biphasic, temperature dependent, bi-directional, concentration dependent and specific. In addition, morphological evidence demonstrates that fluorescent methotrexate, a folate analog, is internalized by Toxoplasma and shows localization reminiscent to the mitochondrion. The presence of putative folate transporter genes in the Toxoplasma genome, which are homologous to the BT1 family of proteins, suggests that Toxoplasma may encode proteins involved in folate transport. Interestingly, genome analysis suggests that the BT1 family of proteins exists not only in Toxoplasma, but in other Apicomplexan parasites as well. Altogether, our results not only have implications for current therapeutic regimens against T. gondii, but they also allude that the folate transport mechanism may represent a novel Apicomplexan target for the development of new drugs.


Assuntos
Ácido Fólico/metabolismo , Toxoplasma/metabolismo , Sequência de Aminoácidos , Animais , Transporte Biológico , Linhagem Celular , Clonagem Molecular , Humanos , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/fisiologia , Metotrexato/metabolismo , Mitocôndrias/metabolismo , Dados de Sequência Molecular , Estrutura Terciária de Proteína/genética , Estrutura Terciária de Proteína/fisiologia , Proteínas de Protozoários/genética , Proteínas de Protozoários/fisiologia , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Toxoplasma/genética
16.
Cell Microbiol ; 7(6): 849-67, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15888087

RESUMO

The intracellular protozoan Toxoplasma gondii lacks a de novo mechanism for cholesterol synthesis and therefore must scavenge this essential lipid from the host environment. In this study, we demonstrated that T. gondii diverts cholesterol from low-density lipoproteins for cholesteryl ester synthesis and storage in lipid bodies. We identified and characterized two isoforms of acyl-CoA:cholesterol acyltransferase (ACAT)-related enzymes, designated TgACAT1alpha and TgACAT1beta in T. gondii. Both proteins are coexpressed in the parasite, localized to the endoplasmic reticulum and participate in cholesteryl ester synthesis. In contrast to mammalian ACAT, TgACAT1alpha and TgACAT1beta preferentially incorporate palmitate into cholesteryl esters and present a broad sterol substrate affinity. Mammalian ACAT-deficient cells transfected with either TgACAT1alpha or TgACAT1beta are restored in their capability of cholesterol esterification. TgACAT1alpha produces steryl esters and forms lipid bodies after transformation in a Saccharomyces cerevisiae mutant strain lacking neutral lipids. In addition to their role as ACAT substrates, host fatty acids and low-density lipoproteins directly serve as Toxoplasma ACAT activators by stimulating cholesteryl ester synthesis and lipid droplet biogenesis. Free fatty acids significantly increase TgACAT1alpha mRNA levels. Selected cholesterol esterification inhibitors impair parasite growth by rapid disruption of plasma membrane. Altogether, these studies indicate that host lipids govern neutral lipid synthesis in Toxoplasma and that interference with mechanisms of host lipid storage is detrimental to parasite survival in mammalian cells.


Assuntos
Ésteres do Colesterol/biossíntese , Lipídeos/fisiologia , Esterol O-Aciltransferase/metabolismo , Toxoplasma/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Membrana Celular/metabolismo , Células Cultivadas , Cricetinae , Cricetulus , Retículo Endoplasmático/enzimologia , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Camundongos , Microscopia Imunoeletrônica , Dados de Sequência Molecular , Mutação , Palmitatos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Esterol O-Aciltransferase/genética , Toxoplasma/enzimologia , Toxoplasma/genética
17.
Mol Biochem Parasitol ; 138(1): 107-22, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15500922

RESUMO

In mammalian cells, the main stored neutral lipids are triacylglycerol and cholesteryl esters, which are produced by two related enzymes, acyl-CoA:diacylglycerol acyltransferase (DGAT) and acyl-CoA:cholesterol acyltransferase (ACAT), respectively. Very little is known about the metabolism, intracellular storage and function of neutral lipids in many pathogenic lower eukaryotes. In this paper, we have characterized the activity of an important triacylglycerol synthetic enzyme in the protozoan Toxoplasma gondii. A full-length cDNA and gene encoding a T. gondii DGAT1-related enzyme were identified and designated TgDGAT1. The gene is composed of 15 exons and 14 introns, and encodes a protein with a predicted M(r) 63.5kDa, containing signature motifs characteristic of the DGAT1 family. The native protein migrates at 44kDa under reducing conditions. TgDGAT1 is an integral membrane protein localized to the parasite cortical and perinuclear endoplasmic reticulum, with the C-terminus oriented to the lumen of the organelle. When a Saccharomyces cerevisiae mutant strain lacking neutral lipid production is transformed with TgDGAT1 cDNA, a significant DGAT activity is reconstituted, resulting in triacylglycerol synthesis and biogenesis of cytosolic lipid inclusions, resembling lipid bodies in T. gondii. No production of steryl esters is observed upon TgDGAT1 expression in yeast. In contrast to human DGAT1 lacking fatty acid specificity, TgDGAT1 preferentially incorporates palmitate. Our results indicate that parasitic protozoa are also neutral lipid accumulators and illustrate the first example of the existence of a functional DGAT gene in an ancient eukaryote, demonstrating that diacylglycerol esterification is evolutionarily conserved.


Assuntos
Aciltransferases/genética , Aciltransferases/metabolismo , Corpos de Inclusão/fisiologia , Metabolismo dos Lipídeos , Toxoplasma/enzimologia , Triglicerídeos/metabolismo , Sequência de Aminoácidos , Animais , Células CHO , Linhagem Celular , Cricetinae , Cricetulus , DNA Complementar , Diacilglicerol O-Aciltransferase , Retículo Endoplasmático/metabolismo , Evolução Molecular , Humanos , Corpos de Inclusão/genética , Dados de Sequência Molecular , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Toxoplasma/genética
18.
FEBS Lett ; 566(1-3): 275-80, 2004 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-15147908

RESUMO

Calcium/calmodulin-dependent protein kinase I-alpha (CaMKI-alpha) is a ubiquitous cytosolic enzyme that phosphorylates a number of nuclear proteins in vitro and has been implicated in transcriptional regulation. We report that cytoplasmic localization of CaMKI-alpha depends on CRM1-mediated nuclear export mediated through a Rev-like nuclear export signal in the CaMKI-alpha regulatory domain. Interaction of CaMKI-alpha with a CRM1 complex in vitro is enhanced by incubation with calcium/calmodulin. Translocation of CaMKI-alpha into the nucleus involves a conserved sequence located within the catalytic core. Mutation of this sequence partially blocks nuclear entry of an export-impaired mutant of CaMKI-alpha.


Assuntos
Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Citoplasma/metabolismo , Sinais de Localização Nuclear/metabolismo , Receptores Citoplasmáticos e Nucleares , Transporte Ativo do Núcleo Celular/fisiologia , Animais , Proteína Quinase Tipo 1 Dependente de Cálcio-Calmodulina , Proteínas Quinases Dependentes de Cálcio-Calmodulina/química , Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , Sequência Consenso , Ativação Enzimática , Carioferinas , Microscopia de Fluorescência , Sinais de Localização Nuclear/genética , Células PC12 , Estrutura Terciária de Proteína , Ratos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Frações Subcelulares/metabolismo , Transfecção , Proteína Exportina 1
19.
J Cell Sci ; 116(Pt 11): 2311-20, 2003 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-12711703

RESUMO

Long after their discovery, the function and biogenesis of rhoptries remain enigmatic. In Apicomplexan parasites, these organelles discharge and their contents are exocytosed at the time of host cell invasion, and are thus proposed to play an essential role in establishing the parasitophorous vacuole. In Toxoplasma gondii, ROP2 is suspected to serve as the molecular link between host cell mitochondria and parasitophorous vacuole membrane. In this study we addressed the function of ROP2. Targeted depletion of ROP2 using a ribozyme-modified antisense RNA strategy resulted in multiple effects on parasite morphology because of a disruption in the formation of mature rhoptries, and an arrest in cytokinesis. The association of host cell mitochondria with the parasitophorous vacuole membrane was abolished and the ROP2-deficient parasites had a reduced uptake of sterol from the host cell. Furthermore, these parasites invaded human fibroblasts poorly and had markedly attenuated virulence in mice. We conclude that rhoptry discharge, and in particular release of ROP2, are essential for parasite invasion, replication and host cell-parasite interaction.


Assuntos
Proteínas de Membrana/genética , Proteínas de Protozoários/genética , Toxoplasma/genética , Toxoplasmose/parasitologia , Animais , Células Cultivadas , Fibroblastos/citologia , Fibroblastos/parasitologia , Interações Hospedeiro-Parasita , Humanos , Camundongos , Microscopia Eletrônica , Mutagênese , RNA Antissenso , Toxoplasma/patogenicidade , Toxoplasma/ultraestrutura , Virulência
20.
J Biol Chem ; 278(7): 5433-43, 2003 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-12468555

RESUMO

Toxoplasma gondii relies on protein secretion from specialized organelles for invasion of host cells and establishment of a parasitophorous vacuole. We identify T. gondii Rab6 as a regulator of protein transport between post-Golgi dense granule organelles and the Golgi. Toxoplasma Rab6 was localized to cisternal rims of the late Golgi and trans-Golgi network, associated transport vesicles, and microdomains of dense granule and endosomal membranes. Overexpression of wild-type Rab6 or GTP-activated Rab6(Q70L) rerouted soluble dense granule secretory proteins to the Golgi and endoplasmic reticulum and augmented the effect of brefeldin A on Golgi resorption to the endoplasmic reticulum. Parasites expressing a nucleotide-free (Rab6(N124I)) or a GDP-bound (Rab6(T25N)) mutant accumulated dense granule proteins in the Golgi and associated transport vesicles and displayed reduced secretion of GRA4 and a delay in glycosylation of GRA2. Activated Rab6 on Golgi membranes colocalized with centrin during mitosis, and parasite clones expressing Rab6 mutants displayed a partial shift in cytokinesis from endodyogeny (formation of two daughter cells) to endopolygeny (multiple daughter cells). We propose that Toxoplasma Rab6 regulates retrograde transport from post-Golgi secretory granules to the parasite Golgi.


Assuntos
Transporte Proteico/fisiologia , Toxoplasma/fisiologia , Proteínas rab de Ligação ao GTP/fisiologia , Sequência de Aminoácidos , Animais , Complexo de Golgi/fisiologia , Dados de Sequência Molecular , Proteínas de Protozoários/fisiologia , Alinhamento de Sequência , Transdução de Sinais/fisiologia , Toxoplasma/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...