Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Sci Total Environ ; 797: 149130, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34311349

RESUMO

Segmented filamentous bacteria (SFB) and Bacteroides fragilis are known to interact with the host immune response through the aryl hydrocarbon receptor (Ahr). 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), an environmental toxicant and a high-affinity Ahr ligand has the potential to modify the effect of SFB and B. fragilis. MicroRNAs (miRNA) with their role in regulating gene expression post-transcriptionally, may potentially be used to observe such interactions between SFB, B. fragilis, and TCDD. However, little is known regarding the impact of gut microbial members on miRNA expression or its modulation in the presence of an environmental toxicant. This information is important in understanding toxicant-mediated dysbiosis in gut microbiome and the resulting human health impacts. In this study, C57BL/6 germ-free (GF) mice were colonized with SFB and B. fragilis and administered 30 µg/kg TCDD every 4 d for 28 d and miRNA were measured. Compared to GF mice, colonization with SFB resulted in an increase in up- and down-regulated Ileal miRNAs. TCDD treatment of this group decreased the number of upregulated miRNA and increased the number of down-regulated miRNAs. Association with SFB and B. fragilis together had a similar but less pronounced effect in response to TCDD treatment. TCDD treatment of GF mice had no miRNA expression response. Immune and inflammatory responses and T-cell differentiation were the key functions impacted by these miRNAs. Overall, these results reveal that the host response to toxicants may also depend on the presence of specific gut microbial populations.


Assuntos
Microbioma Gastrointestinal , MicroRNAs , Dibenzodioxinas Policloradas , Animais , Imunidade , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Dibenzodioxinas Policloradas/toxicidade , Receptores de Hidrocarboneto Arílico/genética
2.
Microb Ecol ; 79(2): 367-382, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31346687

RESUMO

We examined the bacterial endophyte-enriched root-associated microbiome within rice (Oryza sativa) 55 days after growth in soil with and without urea fertilizer and/or biofertilization with a growth-promotive bacterial strain (Rhizobium leguminosarum bv. trifolii E11). After treatment to deplete rhizosphere/rhizoplane communities, washed roots were macerated and their endophyte-enriched communities were analyzed by 16S ribosomal DNA 454 amplicon pyrosequencing. This analysis clustered 99,990 valid sequence reads into 1105 operational taxonomic units (OTUs) with 97% sequence identity, 133 of which represented a consolidated core assemblage representing 12.04% of the fully detected OTU richness. Taxonomic affiliations indicated Proteobacteria as the most abundant phylum (especially α- and γ-Proteobacteria classes), followed by Firmicutes, Bacteroidetes, Verrucomicrobia, Actinobacteria, and several other phyla. Dominant genera included Rheinheimera, unclassified Rhodospirillaceae, Pseudomonas, Asticcacaulis, Sphingomonas, and Rhizobium. Several OTUs had close taxonomic affiliation to genera of diazotrophic rhizobacteria, including Rhizobium, unclassified Rhizobiales, Azospirillum, Azoarcus, unclassified Rhizobiaceae, Bradyrhizobium, Azonexus, Mesorhizobium, Devosia, Azovibrio, Azospira, Azomonas, and Azotobacter. The endophyte-enriched microbiome was restructured within roots receiving growth-promoting treatments. Compared to the untreated control, endophyte-enriched communities receiving urea and/or biofertilizer treatments were significantly reduced in OTU richness and relative read abundances. Several unique OTUs were enriched in each of the treatment communities. These alterations in structure of root-associated communities suggest dynamic interactions in the host plant microbiome, some of which may influence the well-documented positive synergistic impact of rhizobial biofertilizer inoculation plus low doses of urea-N fertilizer on growth promotion of rice, considered as one of the world's most important food crops.


Assuntos
Endófitos/fisiologia , Fertilizantes , Microbiota/fisiologia , Oryza/microbiologia , Raízes de Plantas/microbiologia , Ureia/metabolismo , Endófitos/efeitos dos fármacos , Microbiota/efeitos dos fármacos , Oryza/efeitos dos fármacos , Oryza/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Rhizobiaceae/química , Rizosfera , Microbiologia do Solo , Ureia/administração & dosagem
3.
FEMS Microbiol Ecol ; 94(9)2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30052926

RESUMO

The high-throughput antibiotic resistance gene (ARG) qPCR array, initially published in 2012, is increasingly used to quantify resistance and mobile determinants in environmental matrices. Continued utility of the array; however, necessitates improvements such as removing or redesigning questionable primer sets, updating targeted genes and coverage of available sequences. Towards this goal, a new primer design tool (EcoFunPrimer) was used to aid in identification of conserved regions of diverse genes. The total number of assays used for diverse genes was reduced from 91 old primer sets to 52 new primer sets, with only a 10% loss in sequence coverage. While the old and new array both contain 384 primer sets, a reduction in old primer sets permitted 147 additional ARGs and mobile genetic elements to be targeted. Results of validating the updated array with a mock community of strains resulted in over 98% of tested instances incurring true positive/negative calls. Common queries related to sensitivity, quantification and conventional data analysis (e.g. Ct cutoff value, and estimated genomic copies without standard curves) were also explored. A combined list of new and previously used primer sets is provided with a recommended set based on redesign of primer sets and results of validation.


Assuntos
Primers do DNA/genética , Resistência Microbiana a Medicamentos/genética , Sequências Repetitivas Dispersas/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Antibacterianos/farmacologia
4.
Front Microbiol ; 8: 1708, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28936204

RESUMO

Environmental toxicants such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), an aryl hydrocarbon receptor (AhR), are known to induce host toxicity and structural shifts in the gut microbiota. Key bacterial populations with similar or opposing functional responses to AhR ligand exposure may potentially help regulate expression of genes associated with immune dysfunction. To examine this question and the mechanisms for AhR ligand-induced bacterial shifts, C57BL/6 gnotobiotic mice were colonized with and without segmented filamentous bacteria (SFB) - an immune activator. Mice were also colonized with polysaccharide A producing Bacteroides fragilis - an immune suppressor to serve as a commensal background. Following colonization, mice were administered TCDD (30 µg/kg) every 4 days for 28 days by oral gavage. Quantified with the nCounter® mouse immunology panel, opposing responses in ileal gene expression (e.g., genes associated with T-cell differentiation via the class II major histocompatibility complex) as a result of TCDD dosing and SFB colonization were observed. Genes that responded to TCDD in the presence of SFB did not show a significant response in the absence of SFB, and vice versa. Regulatory T-cells examined in the mesenteric lymph-nodes, spleen, and blood were also less impacted by TCDD in mice colonized with SFB. TCDD-induced shifts in abundance of SFB and B. fragilis compared with previous studies in mice with a traditional gut microbiome. With regard to the mouse model colonized with individual populations, results indicate that TCDD-induced host response was significantly modulated by the presence of SFB in the gut microbiome, providing insight into therapeutic potential between AhR ligands and key commensals.

5.
Appl Microbiol Biotechnol ; 101(19): 7409-7415, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28812142

RESUMO

Activated carbon (AC) is an increasingly attractive remediation alternative for the sequestration of dioxins at contaminated sites globally. However, the potential for AC to reduce the bioavailability of dioxins in mammals and the residing gut microbiota has received less attention. This question was partially answered in a recent study examining 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced hallmark toxic responses in mice administered with TCDD sequestered by AC or freely available in corn oil by oral gavage. Results from that study support the use of AC to significantly reduce the bioavailability of TCDD to the host. Herein, we examined the bioavailability of TCDD sequestered to AC on a key murine gut commensal and the influence of AC on the community structure of the gut microbiota. The analysis included qPCR to quantify the expression of segmented filamentous bacteria (SFB) in the mouse ileum, which has responded to TCDD-induced host toxicity in previous studies and community structure via sequencing the 16S ribosomal RNA (rRNA) gene. The expression of SFB 16S rRNA gene and functional genes significantly increased with TCDD administered with corn oil vehicle. Such a response was absent when TCDD was sequestered by AC. In addition, AC appeared to have a minimal influence on murine gut community structure and diversity, affecting only the relative abundance of Lactobacillaceae and two other groups. Results of this study further support the remedial use of AC for eliminating bioavailability of TCDD to host and subsequent influence on the gut microbiome.


Assuntos
Carvão Vegetal/administração & dosagem , Microbioma Gastrointestinal/efeitos dos fármacos , Dibenzodioxinas Policloradas/administração & dosagem , Animais , Disponibilidade Biológica , Carvão Vegetal/farmacocinética , Óleo de Milho/administração & dosagem , Óleo de Milho/farmacocinética , Feminino , Íleo/microbiologia , Lactobacillaceae/metabolismo , Camundongos , Dibenzodioxinas Policloradas/farmacocinética , Dibenzodioxinas Policloradas/toxicidade , RNA Ribossômico 16S/genética , Transcriptoma
6.
Water Res ; 121: 162-170, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28527390

RESUMO

Guidelines and regulations to control Legionella pneumophila in cooling water systems of large buildings are evolving due to the increasing number of outbreaks. Rapid, on-site, simple, and sensitive quantification methods that are also able to assess viability may be extremely useful in monitoring and control. Culture-based methods for measuring L. pneumophila may take 4-10 days and qPCR-based methods are also slow, requiring at least a day from sample to result, albeit mainly due to the need for sample transport to a centralized laboratory. This study reports a rapid isothermal amplification method for L. pneumophila concentration and detection with live/dead differentiation under field conditions. Using an on-filter direct amplification (i.e., amplification of cells without DNA extraction and purification) approach with propidium monoazide (PMA), and a real time isothermal amplification platform (Gene-Z), L. pneumophila could be detected in 1-2 h at ∼1 cfu/100 ml of tap water. Signature sequences from 16S rRNA and cadA genes were used as genetic markers for L. pneumophila and loop-mediated isothermal amplification (LAMP) primers were designed using Primer Explorer V4. Result were also compared with direct amplification of cells spiked into distilled, tap, and cooling water samples as well as extracted DNA by qPCR. This method may be useful to managers of cooling water systems in large buildings for rapid detection of L. pneumophila. The overall approach of on-site sample concentration, on-filter amplification, and live/dead differentiation may be extended to other organisms where analytical sensitivity and speed are equally important.


Assuntos
Legionella pneumophila/genética , Técnicas de Amplificação de Ácido Nucleico , Reação em Cadeia da Polimerase em Tempo Real , Microbiologia da Água , Primers do DNA , Legionella , RNA Ribossômico 16S , Sensibilidade e Especificidade
7.
Biomed Microdevices ; 19(3): 45, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28536858

RESUMO

MicroRNAs have been proposed to be a class of biomarkers of disease as expression levels are significantly altered in various tissues and body fluids when compared to healthy controls. As such, the detection and quantification of microRNAs is imperative. While many methods have been established for quantification of microRNAs, they typically rely on time consuming handling such as RNA extraction, purification, or ligation. Here we describe a novel method for quantification of microRNAs using direct amplification in body fluids without upstream sample preparation. Tested with a point-of-care device (termed Gene-Z), the presence of microRNA promotes base-stacking hybridization, and subsequent amplification between two universal strands. The base-stacking approach, which was achieved in <60 min, provided a sensitivity of 1.4 fmol per reaction. Tested in various percentages of whole blood, plasma, and faeces, precision (coefficient of variation = 2.6%) was maintained and comparable to amplification in pristine samples. Overall, the developed method represents a significant step towards rapid, one-step detection of microRNAs.


Assuntos
Líquidos Corporais/química , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Técnicas de Amplificação de Ácido Nucleico/instrumentação , Sistemas Automatizados de Assistência Junto ao Leito , Animais , Sequência de Bases , Análise Química do Sangue , Fezes/química , Limite de Detecção , Camundongos , MicroRNAs/sangue , MicroRNAs/química
8.
FEMS Microbiol Ecol ; 93(5)2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28475713

RESUMO

Dysbiosis of the gut microbiome via antibiotics, changes in diet and infection can select for bacterial groups that more frequently harbor antimicrobial resistance genes (ARGs) and mobile genetic elements (MGEs). However, the impact of environmental toxicants on the reservoir of ARGs in the gut microbiome has received less attention. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a potent aryl hydrocarbon receptor (AhR) agonist with multiple toxic health effects including immune dysfunction. The selective pressure of TCDD on the abundance of ARG and MGE-harboring gut populations was examined using C57BL/6 mice exposed to 0-30 µg/kg TCDD for 28 and 92 days with the latter having a 30-day recovery period. DNA extracted from temporally collected fecal pellets was characterized using a qPCR array with 384 assays targeting ARGs and MGEs. Fourteen genes, typically observed in Enterobacteriaceae, increased significantly within 8 days of initial dosing, persisted throughout the treatment period, and remained induced 30 days post dosing. A qPCR primer set targeting Enterobacteriaceae also showed 10- to 100-fold higher abundance in TCDD-treated groups, which was further verified using metagenomics. Results show a bloom of ARG-harboring bacterial groups in the gut due to a xenobiotic compound that is not a metal, biocide or antimicrobial.


Assuntos
Farmacorresistência Bacteriana/genética , Disbiose/induzido quimicamente , Enterobacteriaceae/efeitos dos fármacos , Enterobacteriaceae/genética , Microbioma Gastrointestinal/efeitos dos fármacos , Dibenzodioxinas Policloradas/farmacologia , Animais , Antibacterianos/farmacologia , Feminino , Sequências Repetitivas Dispersas/genética , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Hidrocarboneto Arílico/antagonistas & inibidores
9.
J Environ Manage ; 198(Pt 1): 213-220, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28460328

RESUMO

Antimicrobial resistance genes (ARGs) present in the environment pose a risk to human health due to potential for transfer to human pathogens. Surveillance is an integral part of mitigating environmental dissemination. Quantification of the mobile genetic element class 1 integron-integrase gene (intI1) has been proposed as a surrogate to measuring multiple ARGs. Measurement of such indicator genes can be further simplified by adopting emerging nucleic acids methods such as loop mediated isothermal amplification (LAMP). In this study, LAMP assays were designed and tested for estimating relative abundance of the intI1 gene, which included design of a universal bacteria 16S rRNA gene assay. Following validation of sensitivity and specificity with known bacterial strains, the assays were tested using DNA extracted from river and lake samples. Results showed a significant Pearson correlation (R2 = 0.8) between the intI1 gene LAMP assay and ARG relative abundance (measured via qPCR). To demonstrate the ruggedness of the LAMP assays, experiments were also run in the hands of relatively "untrained" personnel by volunteer undergraduate students at a local community college using a hand-held real-time DNA analysis device - Gene-Z. Overall, results support use of the intI1 gene as an indicator of ARGs and the LAMP assays exhibit the opportunity for volunteers to monitor environmental samples for anthropogenic pollution outside of a specialized laboratory.


Assuntos
Resistência Microbiana a Medicamentos , Monitoramento Ambiental , Integrases/genética , RNA Ribossômico 16S , Humanos , Integrons
10.
Front Microbiol ; 8: 2211, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29312154

RESUMO

Battling infection is a major healthcare objective. Untreated infections can rapidly evolve toward the condition of sepsis in which the body begins to fail and resuscitation becomes critical and tenuous. Identification of infection followed by rapid antimicrobial treatment are primary goals of medical care, but precise identification of offending organisms by current methods is slow and broad spectrum empirical therapy is employed to cover most potential pathogens. Current methods for identification of bacterial pathogens in a clinical setting typically require days of time, or a 4- to 8-h growth phase followed by DNA extraction, purification and PCR-based amplification. We demonstrate rapid (70-120 min) genetic diagnostics methods utilizing loop-mediated isothermal amplification (LAMP) to test for 15 common infection pathogen targets, called the Infection Diagnosis Panel (In-Dx). The method utilizes filtration to rapidly concentrate bacteria in sample matrices with lower bacterial loads and direct LAMP amplification without DNA purification from clinical blood, urine, wound, sputum and stool samples. The In-Dx panel was tested using two methods of detection: (1) real-time thermocycler fluorescent detection of LAMP amplification and (2) visual discrimination of color change in the presence of Eriochrome Black T (EBT) dye following amplification. In total, 239 duplicate samples were collected (31 blood, 122 urine, 73 mucocutaneous wound/swab, 11 sputum and two stool) from 229 prospectively enrolled hospital patients with suspected clinical infection and analyzed both at the hospital and by In-Dx. Sensitivity (Se) of the In-Dx panel targets pathogens from urine samples by In-Dx was 91.1% and specificity (Sp) was 97.3%, with a positive predictive value (PPV) of 53.7% and a negative predictive value (NPV) of 99.7% as compared to clinical microbial detection methods. Sensitivity of detection of the In-Dx panel from mucocutaneous swab samples was 65.5% with a Sp of 99.3%, and a PPV of 84% and NPV of 98% as compared to clinical microbial detection methods. Results indicate the LAMP-based In-Dx panel allows rapid and precise diagnosis of clinical infections by targeted pathogens across multiple culture types for point-of-care utilization.

11.
J Microbiol Methods ; 131: 61-67, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27720723

RESUMO

Nucleic acid amplification of biomarkers is increasingly used to monitor microbial activity and assess remedial performance in contaminated aquifers. Previous studies described the use of filtration, elution, and direct isothermal amplification (i.e. no DNA extraction and purification) as a field-able means to quantify Dehalococcoides spp. in groundwater. This study expands previous work with direct loop mediated isothermal amplification (LAMP) for the detection and quantification of Dehalobacter spp. in groundwater. Experiments tested amplification of DNA with and without crude lysis and varying concentrations of humic acid. Three separate field-able methods of biomass concentration with eight aquifer samples were also tested, comparing direct LAMP with traditional DNA extraction and quantitative PCR (qPCR). A new technique was developed where filters were amplified directly within disposable Gene-Z chips. The direct filter amplification (DFA) method eliminated an elution step and provided a detection limit of 102Dehalobacter cells per 100mL. LAMP with crudely lysed Dehalobacter had a negligible effect on threshold time and sensitivity compared to lysed samples. The LAMP assay was more resilient than traditional qPCR to humic acid in sample, amplifying with up to 100mg per L of humic acid per reaction compared to 1mg per L for qPCR. Of the tested field-able concentrations methods, DFA had the lowest coefficient of variation among Dehalobacter spiked groundwater samples and lowest threshold time indicating high capture efficiency and low inhibition. While demonstrated with Dehalobacter, the DFA method can potentially be used for a number of applications requiring field-able, rapid (<60min) and highly sensitive quantification of microorganisms in environmental water samples.


Assuntos
Chloroflexi/genética , Chloroflexi/isolamento & purificação , Monitoramento Ambiental/métodos , Filtração/métodos , Água Subterrânea/microbiologia , Técnicas de Amplificação de Ácido Nucleico/métodos , Técnicas Bacteriológicas/métodos , Biomarcadores/análise , Biomassa , DNA Bacteriano/análise , DNA Bacteriano/isolamento & purificação , Monitoramento Ambiental/instrumentação , Desenho de Equipamento , Dosagem de Genes , Limite de Detecção , Técnicas de Amplificação de Ácido Nucleico/instrumentação , RNA Ribossômico 16S/genética , Reação em Cadeia da Polimerase em Tempo Real/instrumentação , Reação em Cadeia da Polimerase em Tempo Real/métodos , Sensibilidade e Especificidade , Fatores de Tempo
12.
Environ Sci Technol ; 50(23): 12621-12629, 2016 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-27797533

RESUMO

Soil is an important environmental reservoir of antibiotic resistance genes (ARGs), which are increasingly recognized as environmental contaminants. Methods to assess the risks associated with the acquisition or transfer of resistance mechanisms are still underdeveloped. Quantification of background levels of antibiotic resistance genes and what alters those is a first step in understanding our environmental resistome. Toward this goal, 62 samples were collected over 3 years from soils near the 30-year old Gondwana Research Station and for 4 years before and during development of the new Jang Bogo Research Station, both at Terra Nova Bay in Antarctica. These sites reflect limited and more extensive human impact, respectively. A qPCR array with 384 primer sets targeting antibiotic resistance genes and mobile genetic elements (MGEs) was used to detect and quantify these genes. A total of 73 ARGs and MGEs encompassing eight major antibiotic resistance gene categories were detected, but most at very low levels. Antarctic soil appeared to be a common reservoir for seven ARGs since they were present in most samples (42%-88%). If the seven widespread genes were removed, there was a correlation between the relative abundance of MGEs and ARGs, more typical of contaminated sites. There was a relationship between ARG content and distance from both research stations, with a significant effect at the Jang Bogo Station especially when excluding the seven widespread genes; however, the relative abundance of ARGs did not increase over the 4 year period. Silt, clay, total organic carbon, and SiO2 were the top edaphic factors that correlated with ARG abundance. Overall, this study identifies that human activity and certain soil characteristics correlate with antibiotic resistance genes in these oligotrophic Antarctic soils and provides a baseline of ARGs and MGEs for future comparisons.


Assuntos
Antibacterianos/farmacologia , Solo , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos/efeitos dos fármacos , Dióxido de Silício/farmacologia
13.
FEMS Microbiol Ecol ; 92(3)2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26850162

RESUMO

An antibiotic resistance (AR) Dashboard application is being developed regarding the occurrence of antibiotic resistance genes (ARG) and bacteria (ARB) in environmental and clinical settings. The application gathers and geospatially maps AR studies, reported occurrence and antibiograms, which can be downloaded for offline analysis. With the integration of multiple data sets, the database can be used on a regional or global scale to identify hot spots for ARGs and ARB; track and link spread and transmission, quantify environmental or human factors influencing presence and persistence of ARG harboring organisms; differentiate natural ARGs from those distributed via human or animal activity; cluster and compare ARGs connections in different environments and hosts; and identify genes that can be used as proxies to routinely monitor anthropogenic pollution. To initially populate and develop the AR Dashboard, a qPCR ARG array was tested with 30 surface waters, primary influent from three waste water treatment facilities, ten clinical isolates from a regional hospital and data from previously published studies including river, park soil and swine farm samples. Interested users are invited to download a beta version (available on iOS or Android), submit AR information using the application, and provide feedback on current and prospective functionalities.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Bases de Dados Factuais , Farmacorresistência Bacteriana , Animais , Bactérias/genética , Bactérias/isolamento & purificação , Infecções Bacterianas/microbiologia , Infecções Bacterianas/veterinária , Proteínas de Bactérias/genética , Humanos , Testes de Sensibilidade Microbiana , Estudos Prospectivos , Rios/microbiologia , Suínos/microbiologia , Águas Residuárias/microbiologia
14.
Appl Microbiol Biotechnol ; 99(18): 7711-22, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26227406

RESUMO

In a clinical setting, molecular assays such as polymerase chain reaction offer a rapid means to infer or confirm identity and therapeutic decisions. Accordingly, a number of molecular assays targeting identity and antibiotic resistance (AR) genes have been developed; however, these methods can be technically complex and relatively expensive. Herein, we describe a diagnostic concept utilizing isothermal amplification technology with non-purified heat-lysed cells and self-dispensing cards for testing multiple primers in parallel. This proof-of-concept study, performed with Staphylococcus aureus isolates and associated AR genes, was compared with culture-based susceptibility and quantitative PCR (qPCR). Results demonstrate reduced sample processing steps resulting in a turnaround time (starting from bacterial culture to ending in the antibiotic resistance gene profile) in less than 30 min. For antibiotics tested in which an associated AR gene was targeted on the Gene-Z card, 69% (18/26) of culture-based resistance events were positive for related AR genes. A comparison of loop-mediated isothermal amplification (LAMP) and qPCR assays targeting the same antibiotic resistance genes showed a 98.2% agreement in terms of presence and absence calls. Identity-based discrepancies between conventional (phenotypic) and molecular (genotypic) results were further resolved, and we were able to demonstrate higher accuracy in identification with the molecular analysis.


Assuntos
Técnicas Bacteriológicas/métodos , Farmacorresistência Bacteriana , Testes Genéticos/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Genes Bacterianos , Testes de Sensibilidade Microbiana/métodos , Staphylococcus aureus/genética , Fatores de Tempo
15.
Biomed Microdevices ; 17(5): 89, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26260693

RESUMO

A microfluidic card is described for simultaneous and rapid genetic detection of multiple microbial pathogens. The hydrophobic surface of native acrylic and a novel microfluidic mechanism termed "airlock" were used to dispense sample into a series of 64 reaction wells without the use of valves, external pumping peripherals, multiple layers, or vacuum assistance. This airlock mechanism was tested with dilutions of whole human blood, saliva, and urine, along with mock samples of varying viscosities and surface tensions. Samples spiked with genomic DNA (gDNA) or crude lysates from clinical bacterial isolates were tested with loop mediated isothermal amplification assays (LAMP) designed to target virulence and antibiotic resistance genes. Reactions were monitored in real time using the Gene-Z, which is a portable smartphone-driven system. Samples loaded correctly into the microfluidic card in 99.3% of instances. Amplification results confirmed no carryover of pre-dispensed primer between wells during sample loading, and no observable diffusion between adjacent wells during the 60 to 90 min isothermal reaction. Sensitivity was comparable between LAMP reactions tested within the microfluidic card and in conventional vials. Tests demonstrate that the airlock card works with various sample types, manufacturing techniques, and can potentially be used in many point-of-care diagnostics applications.


Assuntos
Bactérias/isolamento & purificação , DNA Bacteriano/genética , Testes Genéticos/instrumentação , Dispositivos Lab-On-A-Chip , Análise em Microsséries/instrumentação , Técnicas de Amplificação de Ácido Nucleico/instrumentação , Bactérias/genética , DNA Bacteriano/análise , Desenho de Equipamento , Análise de Falha de Equipamento , Miniaturização , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
16.
Environ Sci Technol ; 48(23): 13855-63, 2014 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-25360694

RESUMO

Nucleic acid amplification of biomarkers is increasingly used to measure microbial activity and predict remedial performance in sites with trichloroethene (TCE) contamination. Field-based genetic quantification of microorganisms associated with bioremediation may help increase accuracy that is diminished through transport and processing of groundwater samples. Sterivex cartridges and a previously undescribed mechanism for eluting biomass was used to concentrate cells. DNA extraction-free loop mediated isothermal amplification (LAMP) was monitored in real-time with a point of use device (termed Gene-Z). A detection limit of 10(5) cells L(­1) was obtained, corresponding to sensitivity between 10 to 100 genomic copies per reaction for assays targeting the Dehalococcoides spp. specific 16S rRNA gene and vcrA gene, respectively. The quantity of Dehalococcoides spp. genomic copies measured from two TCE contaminated groundwater samples with conventional means of quantification including filtration, DNA extraction, purification, and qPCR was comparable to the field ready technique. Overall, this method of measuring Dehalococcoides spp. and vcrA genes in groundwater via direct amplification without intentional DNA extraction and purification is demonstrated, which may provide a more accurate mechanism of predicting remediation rates.


Assuntos
Chloroflexi/genética , Chloroflexi/isolamento & purificação , Monitoramento Ambiental/instrumentação , Monitoramento Ambiental/métodos , Água Subterrânea/microbiologia , Biodegradação Ambiental , DNA Bacteriano/isolamento & purificação , Desenho de Equipamento , Genes de RNAr , Limite de Detecção , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética , Tricloroetileno , Poluentes Químicos da Água
17.
Lab Chip ; 12(8): 1454-62, 2012 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-22374412

RESUMO

By 2012, point of care (POC) testing will constitute roughly one third of the $59 billion in vitro diagnostics market. The ability to carry out multiplexed genetic testing and wireless connectivity are emerging as key attributes of future POC devices. In this study, an inexpensive, user-friendly and compact device (termed Gene-Z) is presented for rapid quantitative detection of multiple genetic markers with high sensitivity and specificity. Using a disposable valve-less polymer microfluidic chip containing four arrays of 15 reaction wells each with dehydrated primers for isothermal amplification, the Gene-Z enables simultaneous analysis of four samples, each for multiple genetic markers in parallel, requiring only a single pipetting step per sample for dispensing. To drastically reduce the cost and size of the real-time detector necessary for quantification, loop-mediated isothermal amplification (LAMP) was performed with a high concentration of SYTO-81, a non-inhibiting fluorescent DNA binding dye. The Gene-Z is operated using an iPod Touch, which also receives data and carries out automated analysis and reporting via a WiFi interface. This study presents data pertaining to performance of the device including sensitivity and reproducibility using genomic DNA from Escherichia coli and Staphylococcus aureus. Overall, the Gene-Z represents a significant step toward truly inexpensive and compact tools for POC genetic testing.


Assuntos
Telefone Celular/instrumentação , DNA/genética , Testes Genéticos/instrumentação , Sistemas Automatizados de Assistência Junto ao Leito , Telefone Celular/economia , DNA Bacteriano/genética , Desenho de Equipamento , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Infecções por Escherichia coli/diagnóstico , Corantes Fluorescentes/análise , Testes Genéticos/economia , Humanos , Sistemas Automatizados de Assistência Junto ao Leito/economia , Sensibilidade e Especificidade , Infecções Estafilocócicas/diagnóstico , Staphylococcus aureus/genética , Staphylococcus aureus/isolamento & purificação
18.
Proc Natl Acad Sci U S A ; 109(5): 1691-6, 2012 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-22307632

RESUMO

Antibiotics have been administered to agricultural animals for disease treatment, disease prevention, and growth promotion for over 50 y. The impact of such antibiotic use on the treatment of human diseases is hotly debated. We raised pigs in a highly controlled environment, with one portion of the littermates receiving a diet containing performance-enhancing antibiotics [chlortetracycline, sulfamethazine, and penicillin (known as ASP250)] and the other portion receiving the same diet but without the antibiotics. We used phylogenetic, metagenomic, and quantitative PCR-based approaches to address the impact of antibiotics on the swine gut microbiota. Bacterial phylotypes shifted after 14 d of antibiotic treatment, with the medicated pigs showing an increase in Proteobacteria (1-11%) compared with nonmedicated pigs at the same time point. This shift was driven by an increase in Escherichia coli populations. Analysis of the metagenomes showed that microbial functional genes relating to energy production and conversion were increased in the antibiotic-fed pigs. The results also indicate that antibiotic resistance genes increased in abundance and diversity in the medicated swine microbiome despite a high background of resistance genes in nonmedicated swine. Some enriched genes, such as aminoglycoside O-phosphotransferases, confer resistance to antibiotics that were not administered in this study, demonstrating the potential for indirect selection of resistance to classes of antibiotics not fed. The collateral effects of feeding subtherapeutic doses of antibiotics to agricultural animals are apparent and must be considered in cost-benefit analyses.


Assuntos
Ração Animal , Antibacterianos/farmacologia , Intestinos/microbiologia , Metagenoma , Animais , Antibacterianos/administração & dosagem , Resistência Microbiana a Medicamentos , Reação em Cadeia da Polimerase , Suínos
19.
Appl Environ Microbiol ; 74(12): 3831-8, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18424532

RESUMO

Development of quantitative PCR (QPCR) assays typically requires extensive screening within and across a given species to ensure specific detection and lucid identification among various pathogenic and nonpathogenic strains and to generate standard curves. To minimize screening requirements, multiple virulence and marker genes (VMGs) were targeted simultaneously to enhance reliability, and a predictive threshold cycle (C(T)) equation was developed to calculate the number of starting copies based on an experimental C(T). The empirical equation was developed with Sybr green detection in nanoliter-volume QPCR chambers (OpenArray) and tested with 220 previously unvalidated primer pairs targeting 200 VMGs from 30 pathogens. A high correlation (R(2) = 0.816) was observed between the predicted and experimental C(T)s based on the organism's genome size, guanine and cytosine (GC) content, amplicon length, and stability of the primer's 3' end. The performance of the predictive C(T) equation was tested using 36 validation samples consisting of pathogenic organisms spiked into genomic DNA extracted from three environmental waters. In addition, the primer success rate was dependent on the GC content of the target organisms and primer sequences. Targeting multiple assays per organism and using the predictive C(T) equation are expected to reduce the extent of the validation necessary when developing QPCR arrays for a large number of pathogens or other targets.


Assuntos
Bactérias/genética , Proteínas de Bactérias/genética , Reação em Cadeia da Polimerase/métodos , Fatores de Virulência/genética , Microbiologia da Água , Bactérias/patogenicidade , Composição de Bases , Benzotiazóis , Primers do DNA/genética , Diaminas , Dosagem de Genes , Modelos Teóricos , Compostos Orgânicos/metabolismo , Quinolinas , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...