Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Neurosci ; 27(2): 339-347, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38168931

RESUMO

Conventional views of brain organization suggest that regions at the top of the cortical hierarchy processes internally oriented information using an abstract amodal neural code. Despite this, recent reports have described the presence of retinotopic coding at the cortical apex, including the default mode network. What is the functional role of retinotopic coding atop the cortical hierarchy? Here we report that retinotopic coding structures interactions between internally oriented (mnemonic) and externally oriented (perceptual) brain areas. Using functional magnetic resonance imaging, we observed robust inverted (negative) retinotopic coding in category-selective memory areas at the cortical apex, which is functionally linked to the classic (positive) retinotopic coding in category-selective perceptual areas in high-level visual cortex. These functionally linked retinotopic populations in mnemonic and perceptual areas exhibit spatially specific opponent responses during both bottom-up perception and top-down recall, suggesting that these areas are interlocked in a mutually inhibitory dynamic. These results show that retinotopic coding structures interactions between perceptual and mnemonic neural systems, providing a scaffold for their dynamic interaction.


Assuntos
Mapeamento Encefálico , Córtex Visual , Mapeamento Encefálico/métodos , Retina/fisiologia , Córtex Visual/fisiologia , Encéfalo , Imageamento por Ressonância Magnética/métodos , Estimulação Luminosa , Percepção , Percepção Visual/fisiologia
2.
J Neurosci ; 43(31): 5723-5737, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37474310

RESUMO

To fluidly engage with the world, our brains must simultaneously represent both the scene in front of us and our memory of the immediate surrounding environment (i.e., local visuospatial context). How does the brain's functional architecture enable sensory and mnemonic representations to closely interface while also avoiding sensory-mnemonic interference? Here, we asked this question using first-person, head-mounted virtual reality and fMRI. Using virtual reality, human participants of both sexes learned a set of immersive, real-world visuospatial environments in which we systematically manipulated the extent of visuospatial context associated with a scene image in memory across three learning conditions, spanning from a single FOV to a city street. We used individualized, within-subject fMRI to determine which brain areas support memory of the visuospatial context associated with a scene during recall (Experiment 1) and recognition (Experiment 2). Across the whole brain, activity in three patches of cortex was modulated by the amount of known visuospatial context, each located immediately anterior to one of the three scene perception areas of high-level visual cortex. Individual subject analyses revealed that these anterior patches corresponded to three functionally defined place memory areas, which selectively respond when visually recalling personally familiar places. In addition to showing activity levels that were modulated by the amount of visuospatial context, multivariate analyses showed that these anterior areas represented the identity of the specific environment being recalled. Together, these results suggest a convergence zone for scene perception and memory of the local visuospatial context at the anterior edge of high-level visual cortex.SIGNIFICANCE STATEMENT As we move through the world, the visual scene around us is integrated with our memory of the wider visuospatial context. Here, we sought to understand how the functional architecture of the brain enables coexisting representations of the current visual scene and memory of the surrounding environment. Using a combination of immersive virtual reality and fMRI, we show that memory of visuospatial context outside the current FOV is represented in a distinct set of brain areas immediately anterior and adjacent to the perceptually oriented scene-selective areas of high-level visual cortex. This functional architecture would allow efficient interaction between immediately adjacent mnemonic and perceptual areas while also minimizing interference between mnemonic and perceptual representations.


Assuntos
Córtex Cerebral , Córtex Visual , Masculino , Feminino , Humanos , Encéfalo , Córtex Visual/diagnóstico por imagem , Memória , Imageamento por Ressonância Magnética/métodos , Mapeamento Encefálico/métodos , Percepção , Percepção Visual
3.
bioRxiv ; 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37292758

RESUMO

Conventional views of brain organization suggest that the cortical apex processes internally-oriented information using an abstract, amodal neural code. Yet, recent reports have described the presence of retinotopic coding at the cortical apex, including the default mode network. What is the functional role of retinotopic coding atop the cortical hierarchy? Here, we report that retinotopic coding structures interactions between internally-oriented (mnemonic) and externally-oriented (perceptual) brain areas. Using fMRI, we observed robust, inverted (negative) retinotopic coding in category-selective memory areas at the cortical apex, which is functionally linked to the classic (positive) retinotopic coding in category-selective perceptual areas in high-level visual cortex. Specifically, these functionally-linked retinotopic populations in mnemonic and perceptual areas exhibit spatially-specific opponent responses during both bottom-up perception and top-down recall, suggesting that these areas are interlocked in a mutually-inhibitory dynamic. Together, these results show that retinotopic coding structures interactions between perceptual and mnemonic neural systems, thereby scaffolding their dynamic interaction.

4.
J Neurosci ; 43(2): 184-186, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36646458

Assuntos
Hipocampo , Motivação
5.
Neuroimage ; 264: 119723, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36328274

RESUMO

fMRI is an indispensable tool for neuroscience investigation, but this technique is limited by multiple sources of physiological and measurement noise. These noise sources are particularly problematic for analysis techniques that require high signal-to-noise ratio for stable model fitting, such as voxel-wise modeling. Multi-echo data acquisition in combination with echo-time dependent ICA denoising (ME-ICA) represents one promising strategy to mitigate physiological and hardware-related noise sources as well as motion-related artifacts. However, most studies employing ME-ICA to date are resting-state fMRI studies, and therefore we have a limited understanding of the impact of ME-ICA on complex task or model-based fMRI paradigms. Here, we addressed this knowledge gap by comparing data quality and model fitting performance of data acquired during a visual population receptive field (pRF) mapping (N = 13 participants) experiment after applying one of three preprocessing procedures: ME-ICA, optimally combined multi-echo data without ICA-denoising, and typical single echo processing. As expected, multi-echo fMRI improved temporal signal-to-noise compared to single echo fMRI, with ME-ICA amplifying the improvement compared to optimal combination alone. However, unexpectedly, this boost in temporal signal-to-noise did not directly translate to improved model fitting performance: compared to single echo acquisition, model fitting was only improved after ICA-denoising. Specifically, compared to single echo acquisition, ME-ICA resulted in improved variance explained by our pRF model throughout the visual system, including anterior regions of the temporal and parietal lobes where SNR is typically low, while optimal combination without ICA did not. ME-ICA also improved reliability of parameter estimates compared to single echo and optimally combined multi-echo data without ICA-denoising. Collectively, these results suggest that ME-ICA is effective for denoising task-based fMRI data for modeling analyzes and maintains the integrity of the original data. Therefore, ME-ICA may be beneficial for complex fMRI experiments, including voxel-wise modeling and naturalistic paradigms.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador/métodos , Reprodutibilidade dos Testes , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Artefatos , Mapeamento Encefálico/métodos
7.
Nat Commun ; 12(1): 2632, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33976141

RESUMO

The neural systems supporting scene-perception and spatial-memory systems of the human brain are well-described. But how do these neural systems interact? Here, using fine-grained individual-subject fMRI, we report three cortical areas of the human brain, each lying immediately anterior to a region of the scene perception network in posterior cerebral cortex, that selectively activate when recalling familiar real-world locations. Despite their close proximity to the scene-perception areas, network analyses show that these regions constitute a distinct functional network that interfaces with spatial memory systems during naturalistic scene understanding. These "place-memory areas" offer a new framework for understanding how the brain implements memory-guided visual behaviors, including navigation.


Assuntos
Córtex Cerebral/fisiologia , Rememoração Mental/fisiologia , Memória Espacial/fisiologia , Navegação Espacial/fisiologia , Percepção Visual/fisiologia , Adulto , Córtex Cerebral/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiologia , Adulto Jovem
8.
J Cogn Neurosci ; 33(2): 159-166, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33054553

RESUMO

Real-world navigation requires movement of the body through space, producing a continuous stream of visual and self-motion signals, including proprioceptive, vestibular, and motor efference cues. These multimodal cues are integrated to form a spatial cognitive map, an abstract, amodal representation of the environment. How the brain combines these disparate inputs and the relative importance of these inputs to cognitive map formation and recall are key unresolved questions in cognitive neuroscience. Recent advances in virtual reality technology allow participants to experience body-based cues when virtually navigating, and thus it is now possible to consider these issues in new detail. Here, we discuss a recent publication that addresses some of these issues (D. J. Huffman and A. D. Ekstrom. A modality-independent network underlies the retrieval of large-scale spatial environments in the human brain. Neuron, 104, 611-622, 2019). In doing so, we also review recent progress in the study of human spatial cognition and raise several questions that might be addressed in future studies.


Assuntos
Realidade Virtual , Sinais (Psicologia) , Humanos , Imageamento por Ressonância Magnética , Movimento , Propriocepção
9.
Neuroimage ; 220: 117112, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32619710

RESUMO

Models of healthy brain function and psychiatric conditions assume that excitatory and inhibitory activity are balanced in the human brain at multiple spatial and temporal scales. In human neuroimaging, concentrations of the major excitatory (glutamate) and inhibitory (γ-aminobutyric acid, GABA) neurotransmitters are measured in vivo using magnetic resonance spectroscopy (MRS). However, despite the central importance of E/I balance to theories of brain function, a relationship between regional glutamate and GABA levels in the human brain has not been shown. We addressed this question in a large corpus of edited MRS data collected at 19 different sites (n â€‹= â€‹220). Consistent with the notion of E/I balance, we found that levels of glutamate+glutamine (Glx) and GABA+ were highly correlated (R â€‹= â€‹0.52, p â€‹= â€‹2.86 x 10-14). This relationship held when controlling for site, scanner vendor, and demographics. Controlling for neurochemicals associated with neuronal density and metabolism (i.e. N-acetylaspartate and creatine) significantly reduced the correlation between GABA+ and Glx, suggesting that the levels of GABA+ and Glx may be critically linked to regional metabolism. These results are consistent with the notion that excitation and inhibition are balanced in the human brain.


Assuntos
Encéfalo/metabolismo , Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Ácido gama-Aminobutírico/metabolismo , Adulto , Encéfalo/diagnóstico por imagem , Feminino , Humanos , Espectroscopia de Ressonância Magnética , Masculino , Neuroimagem , Adulto Jovem
10.
Sci Rep ; 10(1): 8906, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32483289

RESUMO

In real-world settings, learning is often characterised as intentional: learners are aware of the goal during the learning process, and the goal of learning is readily dissociable from the awareness of what is learned. Recent evidence has shown that reward and punishment (collectively referred to as valenced feedback) are important factors that influence performance during learning. Presently, however, studies investigating the impact of valenced feedback on skill learning have only considered unintentional learning, and therefore the interaction between intentionality and valenced feedback has not been systematically examined. The present study investigated how reward and punishment impact behavioural performance when participants are instructed to learn in a goal-directed fashion (i.e. intentionally) rather than unintentionally. In Experiment 1, participants performed the serial response time task with reward, punishment, or control feedback and were instructed to ignore the presence of the sequence, i.e., learn unintentionally. Experiment 2 followed the same design, but participants were instructed to intentionally learn the sequence. We found that punishment significantly benefitted performance during learning only when participants learned unintentionally, and we observed no effect of punishment when participants learned intentionally. Thus, the impact of feedback on performance may be influenced by goal of the learner.


Assuntos
Intenção , Aprendizagem/fisiologia , Punição/psicologia , Recompensa , Adulto , Feminino , Humanos , Masculino , Tempo de Reação , Adulto Jovem
11.
Elife ; 82019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31305238

RESUMO

Human medial parietal cortex (MPC) is implicated in multiple cognitive processes including memory recall, visual scene processing and navigation, and is a core component of the default mode network. Here, we demonstrate distinct subdivisions of MPC that are selectively recruited during memory recall of either specific people or places. First, distinct regions of MPC exhibited differential functional connectivity with medial and lateral regions of ventral temporal cortex (VTC). Second, these same medial regions showed selective, but negative, responses to the visual presentation of different stimulus categories, with clear preferences for scenes and faces. Finally, and most critically, these regions were differentially recruited during memory recall of either people or places with a strong familiarity advantage. Taken together, these data suggest that the organizing principle defining the medial-lateral axis of VTC is reflected in MPC, but in the context of memory recall.


Assuntos
Rememoração Mental/fisiologia , Lobo Parietal/fisiologia , Adulto , Feminino , Humanos , Masculino , Rede Nervosa/fisiologia , Oxigênio/sangue , Estimulação Luminosa , Descanso , Lobo Temporal/fisiologia
12.
Neuroimage ; 197: 368-382, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31054350

RESUMO

Numerous factors have been reported to underlie the representation of complex images in high-level human visual cortex, including categories (e.g. faces, objects, scenes), animacy, and real-world size, but the extent to which this organization reflects behavioral judgments of real-world stimuli is unclear. Here, we compared representations derived from explicit behavioral similarity judgments and ultra-high field (7T) fMRI of human visual cortex for multiple exemplars of a diverse set of naturalistic images from 48 object and scene categories. While there was a significant correlation between similarity judgments and fMRI responses, there were striking differences between the two representational spaces. Behavioral judgements primarily revealed a coarse division between man-made (including humans) and natural (including animals) images, with clear groupings of conceptually-related categories (e.g. transportation, animals), while these conceptual groupings were largely absent in the fMRI representations. Instead, fMRI responses primarily seemed to reflect a separation of both human and non-human faces/bodies from all other categories. Further, comparison of the behavioral and fMRI representational spaces with those derived from the layers of a deep neural network (DNN) showed a strong correspondence with behavior in the top-most layer and with fMRI in the mid-level layers. These results suggest a complex relationship between localized responses in high-level visual cortex and behavioral similarity judgments - each domain reflects different properties of the images, and responses in high-level visual cortex may correspond to intermediate stages of processing between basic visual features and the conceptual categories that dominate the behavioral response.


Assuntos
Julgamento/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Córtex Visual/fisiologia , Adulto , Mapeamento Encefálico , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Estimulação Luminosa , Adulto Jovem
13.
Brain Inj ; 33(7): 854-868, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30848964

RESUMO

The posterior cingulate cortex (PCC) and corpus callosum (CC) are susceptible to trauma, but injury often evades detection. PCC Metabolic disruption may predict CC white matter tract injury and the secondary cascade responsible for progression. While the time frame for the secondary cascade remains unclear in humans, the first 24 h (hyper-acute phase) are crucial for life-saving interventions. Objectives: To test whether Magnetic Resonance Imaging (MRI) markers are detectable in the hyper-acute phase and progress after traumatic brain injury (TBI) and whether alterations in these parameters reflect injury severity. Methods: Spectroscopic and diffusion-weighted MRI data were collected in 18 patients with TBI (within 24 h and repeated 7-15 days following injury) and 18 healthy controls (scanned once). Results: Within 24 h of TBI N-acetylaspartate was reduced (F = 11.43, p = 0.002) and choline increased (F = 10.67, p = 0.003), the latter driven by moderate-severe injury (F = 5.54, p = 0.03). Alterations in fractional anisotropy (FA) and axial diffusivity (AD) progressed between the two time-points in the splenium of the CC (p = 0.029 and p = 0.013). Gradual reductions in FA correlated with progressive increases in choline (p = 0.029). Conclusions: Metabolic disruption and structural injury can be detected within hours of trauma. Metabolic and diffusion parameters allow identification of severity and provide evidence of injury progression.


Assuntos
Lesões Encefálicas Traumáticas/diagnóstico por imagem , Corpo Caloso/diagnóstico por imagem , Giro do Cíngulo/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Adulto , Idoso , Idoso de 80 Anos ou mais , Lesões Encefálicas Traumáticas/metabolismo , Corpo Caloso/lesões , Corpo Caloso/metabolismo , Imagem de Tensor de Difusão , Feminino , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/metabolismo , Giro do Cíngulo/lesões , Giro do Cíngulo/metabolismo , Humanos , Processamento de Imagem Assistida por Computador , Espectroscopia de Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Neuroimagem , Substância Branca/metabolismo , Adulto Jovem
14.
Neuroimage ; 189: 95-105, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30630080

RESUMO

Reward and punishment shape behavior, but the mechanisms underlying their effect on skill learning are not well understood. Here, we tested whether the functional connectivity of premotor cortex (PMC), a region known to be critical for learning of sequencing skills, is altered after training when reward or punishment is given during training. Resting-state fMRI was collected in two experiments before and after participants trained on either a serial reaction time task (SRTT; n = 36) or force-tracking task (FTT; n = 36) with reward, punishment, or control feedback. In each experiment, training-related change in PMC functional connectivity was compared across feedback groups. In both tasks, we found that reward and punishment differentially affected PMC functional connectivity. On the SRTT, participants trained with reward showed an increase in functional connectivity between PMC and cerebellum as well as PMC and striatum, while participants trained with punishment showed an increase in functional connectivity between PMC and medial temporal lobe connectivity. After training on the FTT, subjects trained with control and reward showed increases in PMC connectivity with parietal and temporal cortices after training, while subjects trained with punishment showed increased PMC connectivity with ventral striatum. While the results from the two experiments overlapped in some areas, including ventral pallidum, temporal lobe, and cerebellum, these regions showed diverging patterns of results across the two tasks for the different feedback conditions. These findings suggest that reward and punishment strongly influence spontaneous brain activity after training, and that the regions implicated depend on the task learned.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Córtex Motor/fisiologia , Destreza Motora/fisiologia , Rede Nervosa/fisiologia , Prática Psicológica , Punição , Recompensa , Aprendizagem Seriada/fisiologia , Adulto , Encéfalo/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Consolidação da Memória/fisiologia , Córtex Motor/diagnóstico por imagem , Rede Nervosa/diagnóstico por imagem , Adulto Jovem
15.
J Neurosci ; 39(4): 705-717, 2019 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-30504281

RESUMO

Human retrosplenial complex (RSC), located in medial parietal cortex, has been implicated in numerous cognitive functions, including scene perception, spatial navigation, and autobiographical memory retrieval. Recently, a posterior-anterior distinction within RSC was proposed, such that posterior aspects process scene-related visual information (constituting a medial place area [MPA]), whereas anterior aspects process information that is vividly retrieved from memory, thereby supporting remembering and potentially navigation. Here, we tested this proposed distinction in a single group of participants (both male and female) using fMRI with both perceptual and mnemonic tasks. After completing a resting-state scan, participants performed a task that required constructing scenes from memory and completed a scene selectivity localizer task. We tested directly perceptual and mnemonic responses in MPA and an anterior, connectivity-defined region (CON), which showed strong functional connectivity with anterior parahippocampal place area. A double dissociation was observed, such that CON was more strongly activated during scene construction than was MPA, whereas MPA was more perceptually responsive than CON. Further, peak responses from the scene construction task were anterior to perceptual peaks in all but 1 participant and hemisphere. Finally, through analyses of the posterior-anterior response profiles, we identify the fundus of the parieto-occipital sulcus as a potential location for the crossover from perceptual to mnemonic representations and highlight a potential left-hemisphere advantage for mnemonic representations. Collectively, our results support a distinction between posterior and anterior aspects of the RSC, suggesting that more specific functional-anatomic terms should be used in its place in future work.SIGNIFICANCE STATEMENT The retrosplenial complex (RSC) has been implicated in vision, spatial cognition, and memory. We previously speculated on a potential posterior-anterior distinction within RSC for scene perception and memory-based scene construction/navigation. Here, we tested this distinction through a combination of resting-state, perceptual, and mnemonic task data. Consistent with our predictions, we demonstrate that perceptual responses peak consistently posterior of those elicited by memory-based scene construction within the broader RSC. Further, we highlight (1) the fundus of the parieto-occipital sulcus as a landmark for the transition between these representations, (2) the anterior bank of parieto-occipital sulcus as the point of maximal separation between these representations, and (3) identify a potential hemispheric asymmetry in mnemonic representations. These data support functional dissociations within RSC.


Assuntos
Memória/fisiologia , Lobo Parietal/fisiologia , Percepção Espacial/fisiologia , Adulto , Mapeamento Encefálico , Feminino , Lateralidade Funcional/fisiologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/fisiologia , Lobo Occipital/fisiologia , Giro Para-Hipocampal/fisiologia , Lobo Parietal/anatomia & histologia , Lobo Parietal/diagnóstico por imagem , Adulto Jovem
16.
Neuroimage ; 188: 524-538, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30578926

RESUMO

Resting-state functional connectivity (rsFC) between brain regions has been used for studying training-related changes in brain function during the offline period of skill learning. However, it is difficult to infer whether the observed training-related changes in rsFC measured between two scans occur as a consequence of task performance, whether they are specific to a given task, or whether they reflect confounding factors such as diurnal fluctuations in brain physiology that impact the MRI signal. Here, we sought to elucidate whether task-specific changes in rsFC are dissociable from time-of-day related changes by evaluating rsFC changes after participants were provided training in either a visuospatial task or a motor sequence task compared to a non-training condition. Given the nature of the tasks, we focused on changes in rsFC of the hippocampal and sensorimotor cortices after short-term training, while controlling for the effect of time-of-day. We also related the change in rsFC of task-relevant brain regions to performance improvement in each task. Our results demonstrate that, even in the absence of any experimental manipulation, significant changes in rsFC can be detected between two resting state functional MRI scans performed just a few hours apart, suggesting time-of-day has a significant impact on rsFC. However, by estimating the magnitude of the time-of-day effect, our findings also suggest that task-specific changes in rsFC can be dissociated from the changes attributed to time-of-day. Taken together, our results show that rsFC can provide insights about training-related changes in brain function during the offline period of skill learning. However, demonstrating the specificity of the changes in rsFC to a given task requires a rigorous experimental design that includes multiple active and passive control conditions, and robust behavioral measures.


Assuntos
Conectoma , Hipocampo/fisiologia , Atividade Motora/fisiologia , Prática Psicológica , Desempenho Psicomotor/fisiologia , Córtex Sensório-Motor/fisiologia , Aprendizagem Seriada/fisiologia , Aprendizagem Espacial/fisiologia , Adulto , Feminino , Hipocampo/diagnóstico por imagem , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino , Córtex Sensório-Motor/diagnóstico por imagem , Fatores de Tempo , Adulto Jovem
17.
Sci Rep ; 8(1): 7792, 2018 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-29773892

RESUMO

Magnetic resonance spectroscopic imaging (MRSI) is a promising technique in both experimental and clinical settings. However, to date, MRSI has been hampered by prohibitively long acquisition times and artifacts caused by subject motion and hardware-related frequency drift. In the present study, we demonstrate that density weighted concentric ring trajectory (DW-CRT) k-space sampling in combination with semi-LASER excitation and metabolite-cycling enables high-resolution MRSI data to be rapidly acquired at 3 Tesla. Single-slice full-intensity MRSI data (short echo time (TE) semi-LASER TE = 32 ms) were acquired from 6 healthy volunteers with an in-plane resolution of 5 × 5 mm in 13 min 30 sec using this approach. Using LCModel analysis, we found that the acquired spectra allowed for the mapping of total N-acetylaspartate (median Cramer-Rao Lower Bound [CRLB] = 3%), glutamate+glutamine (8%), and glutathione (13%). In addition, we demonstrate potential clinical utility of this technique by optimizing the TE to detect 2-hydroxyglutarate (long TE semi-LASER, TE = 110 ms), to produce relevant high-resolution metabolite maps of grade III IDH-mutant oligodendroglioma in a single patient. This study demonstrates the potential utility of MRSI in the clinical setting at 3 Tesla.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Glutaratos/análise , Espectroscopia de Ressonância Magnética/métodos , Adulto , Idoso , Encéfalo/metabolismo , Neoplasias Encefálicas/metabolismo , Feminino , Humanos , Masculino
18.
NMR Biomed ; 31(1)2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29044762

RESUMO

It has been shown that density-weighted (DW) k-space sampling with spiral and conventional phase encoding trajectories reduces spatial side lobes in magnetic resonance spectroscopic imaging (MRSI). In this study, we propose a new concentric ring trajectory (CRT) for DW-MRSI that samples k-space with a density that is proportional to a spatial, isotropic Hanning window. The properties of two different DW-CRTs were compared against a radially equidistant (RE) CRT and an echo-planar spectroscopic imaging (EPSI) trajectory in simulations, phantoms and in vivo experiments. These experiments, conducted at 7 T with a fixed nominal voxel size and matched acquisition times, revealed that the two DW-CRT designs improved the shape of the spatial response function by suppressing side lobes, also resulting in improved signal-to-noise ratio (SNR). High-quality spectra were acquired for all trajectories from a specific region of interest in the motor cortex with an in-plane resolution of 7.5 × 7.5 mm2 in 8 min 3 s. Due to hardware limitations, high-spatial-resolution spectra with an in-plane resolution of 5 × 5 mm2 and an acquisition time of 12 min 48 s were acquired only for the RE and one of the DW-CRT trajectories and not for EPSI. For all phantom and in vivo experiments, DW-CRTs resulted in the highest SNR. The achieved in vivo spectral quality of the DW-CRT method allowed for reliable metabolic mapping of eight metabolites including N-acetylaspartylglutamate, γ-aminobutyric acid and glutathione with Cramér-Rao lower bounds below 50%, using an LCModel analysis. Finally, high-quality metabolic mapping of a whole brain slice using DW-CRT was achieved with a high in-plane resolution of 5 × 5 mm2 in a healthy subject. These findings demonstrate that our DW-CRT MRSI technique can perform robustly on MRI systems and within a clinically feasible acquisition time.


Assuntos
Algoritmos , Imageamento por Ressonância Magnética , Espectroscopia de Prótons por Ressonância Magnética , Adulto , Simulação por Computador , Feminino , Humanos , Masculino , Metaboloma , Imagens de Fantasmas
19.
Cortex ; 97: 70-80, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29096197

RESUMO

Inhibitory repetitive transcranial magnetic stimulation (rTMS) of the primary motor area (M1) impairs motor sequence-learning, but not basic motor function. It is unknown if this is specific for motor forms of procedural learning or a more general effect. To investigate, we tested the effect of M1-inhibition on the weather prediction task (WPT), a learning task with minimal motor learning component. In the WPT, participants learn arbitrary, probabilistic, associations between sets of meaningless cues and fictional outcomes. In our "Feedback" (FB) condition, they received monetary rewards/punishments during learning. In the "paired associate" (PA) condition they learned the same information by passive observation of associations. The observational and feedback learning conditions were matched for their non-learning-specific motor demands. In each of two FB or PA sessions, we delivered Real (inhibitory) or Sham continuous theta-burst (cTBS) to the left-M1, before 150 training-trials. We then tested learning with 42 trials without feedback immediately after learning and again 1-h after cTBS. Compared to Sham, Real cTBS reduced performance during FB-learning, when learning was immediately reinforced, but not when knowledge was tested after PA learning. Furthermore, when FB-based memory was tested after learning without immediate incentive, there was no effect of TMS compared to post-PA test performance, showing the TMS effect operated only in the presence of incentive and feedback. We conclude that M1 is a node in a network underlying feedback-driven procedural learning and inhibitory rTMS there results in decreased network efficiency.


Assuntos
Cognição/fisiologia , Aprendizagem/fisiologia , Motivação/fisiologia , Córtex Motor/fisiologia , Inibição Neural/fisiologia , Recompensa , Estimulação Magnética Transcraniana , Adolescente , Adulto , Potencial Evocado Motor/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Adulto Jovem
20.
Sci Rep ; 6: 36056, 2016 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-27786302

RESUMO

Reward and punishment motivate behavior, but it is unclear exactly how they impact skill performance and whether the effect varies across skills. The present study investigated the effect of reward and punishment in both a sequencing skill and a motor skill context. Participants trained on either a sequencing skill (serial reaction time task) or a motor skill (force-tracking task). Skill knowledge was tested immediately after training, and again 1 hour, 24-48 hours, and 30 days after training. We found a dissociation of the effects of reward and punishment on the tasks, primarily reflecting the impact of punishment. While punishment improved serial reaction time task performance, it impaired force-tracking task performance. In contrast to prior literature, neither reward nor punishment benefitted memory retention, arguing against the common assumption that reward ubiquitously benefits skill retention. Collectively, these results suggest that punishment impacts skilled behavior more than reward in a complex, task dependent fashion.


Assuntos
Aprendizagem , Destreza Motora/fisiologia , Punição , Recompensa , Análise e Desempenho de Tarefas , Adulto , Retroalimentação Psicológica , Feminino , Humanos , Masculino , Tempo de Reação , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...