Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FASEB J ; 33(6): 7563-7577, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30870003

RESUMO

Dietary inorganic nitrate prevents aspects of cardiac mitochondrial dysfunction induced by hypoxia, although the mechanism is not completely understood. In both heart and skeletal muscle, nitrate increases fatty acid oxidation capacity, and in the latter case, this involves up-regulation of peroxisome proliferator-activated receptor (PPAR)α expression. Here, we investigated whether dietary nitrate modifies mitochondrial function in the hypoxic heart in a PPARα-dependent manner. Wild-type (WT) mice and mice without PPARα (Ppara-/-) were given water containing 0.7 mM NaCl (control) or 0.7 mM NaNO3 for 35 d. After 7 d, mice were exposed to normoxia or hypoxia (10% O2) for the remainder of the study. Mitochondrial respiratory function and metabolism were assessed in saponin-permeabilized cardiac muscle fibers. Environmental hypoxia suppressed mass-specific mitochondrial respiration and additionally lowered the proportion of respiration supported by fatty acid oxidation by 18% (P < 0.001). This switch away from fatty acid oxidation was reversed by nitrate treatment in hypoxic WT but not Ppara-/- mice, indicating a PPARα-dependent effect. Hypoxia increased hexokinase activity by 33% in all mice, whereas lactate dehydrogenase activity increased by 71% in hypoxic WT but not Ppara-/- mice. Our findings indicate that PPARα plays a key role in mediating cardiac metabolic remodeling in response to both hypoxia and dietary nitrate supplementation.-Horscroft, J. A., O'Brien, K. A., Clark, A. D., Lindsay, R. T., Steel, A. S., Procter, N. E. K., Devaux, J., Frenneaux, M., Harridge, S. D. R., Murray, A. J. Inorganic nitrate, hypoxia, and the regulation of cardiac mitochondrial respiration-probing the role of PPARα.


Assuntos
Respiração Celular , Hipóxia/metabolismo , Mitocôndrias Cardíacas/metabolismo , Nitratos/metabolismo , PPAR alfa/fisiologia , Animais , Compostos Inorgânicos/administração & dosagem , Compostos Inorgânicos/metabolismo , Camundongos , Camundongos Knockout , Miocárdio/metabolismo , Nitratos/administração & dosagem , Fosforilação Oxidativa , PPAR alfa/genética
2.
Biochim Biophys Acta Mol Basis Dis ; 1865(4): 844-853, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30055294

RESUMO

Hypoxia is a feature of many disease states where convective oxygen delivery is impaired, and is known to suppress oxidative metabolism. Acclimation to hypoxia thus requires metabolic remodelling, however hypoxia tolerance may be aided by dietary nitrate supplementation. Nitrate improves tissue oxygenation and has been shown to modulate skeletal muscle tissue metabolism via transcriptional changes, including through the activation of peroxisome proliferator-activated receptor alpha (PPARα), a master regulator of fat metabolism. Here we investigated whether nitrate supplementation protects skeletal muscle mitochondrial function in hypoxia and whether PPARα is required for this effect. Wild-type and PPARα knockout (PPARα-/-) mice were supplemented with sodium nitrate via the drinking water or sodium chloride as control, and exposed to environmental hypoxia (10% O2) or normoxia for 4 weeks. Hypoxia suppressed mitochondrial respiratory function in mouse soleus, an effect partially alleviated through nitrate supplementation, but occurring independently of PPARα. Specifically, hypoxia resulted in 26% lower mass specific fatty acid-supported LEAK respiration and 23% lower pyruvate-supported oxidative phosphorylation capacity. Hypoxia also resulted in 24% lower citrate synthase activity in mouse soleus, possibly indicating a loss of mitochondrial content. These changes were not seen, however, in hypoxic mice when supplemented with dietary nitrate, indicating a nitrate dependent preservation of mitochondrial function. Moreover, this was observed in both wild-type and PPARα-/- mice. Our results support the notion that nitrate supplementation can aid hypoxia tolerance and indicate that nitrate can exert effects independently of PPARα.


Assuntos
Hipóxia/metabolismo , Músculo Esquelético/efeitos dos fármacos , Nitratos/farmacologia , PPAR alfa/metabolismo , Animais , Células Cultivadas , Citrato (si)-Sintase/metabolismo , Suplementos Nutricionais , Ácidos Graxos/metabolismo , Masculino , Camundongos , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Nitratos/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA