Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Hered ; 114(1): 14-21, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36146890

RESUMO

Heteroplasmy in the mitochondrial genome offers a rare opportunity to track the evolution of a newly arising maternal lineage in populations of non-model species. Here, we identified a previously unreported mitochondrial DNA haplotype while assembling an integrated database of DNA profiles and photo-identification records from humpback whales in southeastern Alaska (SEAK). The haplotype, referred to as A8, was shared by only 2 individuals, a mature female with her female calf, and differed by only a single base pair from a common haplotype in the North Pacific, referred to as A-. To investigate the origins of the A8 haplotype, we reviewed n = 1,089 electropherograms (including replicate samples) of n = 710 individuals with A- haplotypes from an existing collection. From this review, we found 20 individuals with clear evidence of heteroplasmy for A-/A8 (parental/derived) haplotypes. Of these, 15 were encountered in SEAK, 4 were encountered on the Hawaiian breeding ground (the primary migratory destination for whales in SEAK), and 1 was encountered in the northern Gulf of Alaska. We used genotype exclusion and likelihood to identify one of the heteroplasmic females as the likely mother of the A8 cow and grandmother of the A8 calf, establishing the inheritance and germ-line fixation of the new haplotype from the parental heteroplasmy. The mutation leading to this heteroplasmy and the fixation of the A8 haplotype provide an opportunity to document the population dynamics and regional fidelity of a newly arising maternal lineage in a population recovering from exploitation.


Assuntos
Jubarte , Animais , Feminino , Bovinos , Jubarte/genética , DNA Mitocondrial/genética , Heteroplasmia , Mitocôndrias/genética , Cetáceos/genética
2.
Proc Biol Sci ; 281(1786)2014 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-24850919

RESUMO

Humpback whales (Megaptera novaeangliae) annually undertake the longest migrations between seasonal feeding and breeding grounds of any mammal. Despite this dispersal potential, discontinuous seasonal distributions and migratory patterns suggest that humpbacks form discrete regional populations within each ocean. To better understand the worldwide population history of humpbacks, and the interplay of this species with the oceanic environment through geological time, we assembled mitochondrial DNA control region sequences representing approximately 2700 individuals (465 bp, 219 haplotypes) and eight nuclear intronic sequences representing approximately 70 individuals (3700 bp, 140 alleles) from the North Pacific, North Atlantic and Southern Hemisphere. Bayesian divergence time reconstructions date the origin of humpback mtDNA lineages to the Pleistocene (880 ka, 95% posterior intervals 550-1320 ka) and estimate radiation of current Northern Hemisphere lineages between 50 and 200 ka, indicating colonization of the northern oceans prior to the Last Glacial Maximum. Coalescent analyses reveal restricted gene flow between ocean basins, with long-term migration rates (individual migrants per generation) of less than 3.3 for mtDNA and less than 2 for nuclear genomic DNA. Genetic evidence suggests that humpbacks in the North Pacific, North Atlantic and Southern Hemisphere are on independent evolutionary trajectories, supporting taxonomic revision of M. novaeangliae to three subspecies.


Assuntos
Actinas/genética , Variação Genética , Jubarte/genética , Animais , Teorema de Bayes , Núcleo Celular/genética , DNA Mitocondrial/genética , Evolução Molecular , Haplótipos , Dados de Sequência Molecular , Oceanos e Mares , Filogenia , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA