Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 131(19): 193605, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38000406

RESUMO

Microwave driving is a ubiquitous technique for superconducting qubits, but the dressed states description based on the conventionally used perturbation theory cannot fully capture the dynamics in the strong driving limit. Comprehensive studies beyond these approximations applicable to transmon-based circuit quantum electrodynamics (QED) systems are unfortunately rare, as the relevant works have been mainly limited to single-mode or two-state systems. In this work, we investigate a microwave-dressed transmon coupled to a single quantized mode over a wide range of driving parameters. We reveal that the interaction between the transmon and resonator as well as the properties of each mode is significantly renormalized in the strong driving limit. Unlike previous theoretical works, we establish a nonrecursive and non-Floquet theory beyond the perturbative regimes, which excellently quantifies the experiments. This work expands our fundamental understanding of dressed cavity QED-like systems beyond the conventional approximations. Our work will also contribute to fast quantum gate implementation, qubit parameter engineering, and fundamental studies on driven nonlinear systems.

2.
Nat Commun ; 14(1): 7566, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37990020

RESUMO

Nonlinear damping, the change in damping rate with the amplitude of oscillations plays an important role in many electrical, mechanical and even biological oscillators. In novel technologies such as carbon nanotubes, graphene membranes or superconducting resonators, the origin of nonlinear damping is sometimes unclear. This presents a problem, as the damping rate is a key figure of merit in the application of these systems to extremely precise sensors or quantum computers. Through measurements of a superconducting resonator, we show that from the interplay of quantum fluctuations and the nonlinearity of a Josephson junction emerges a power-dependence in the resonator response which closely resembles nonlinear damping. The phenomenon can be understood and visualized through the flow of quasi-probability in phase space where it reveals itself as dephasing. Crucially, the effect is not restricted to superconducting circuits: we expect that quantum fluctuations or other sources of noise give rise to apparent nonlinear damping in systems with a similar conservative nonlinearity, such as nano-mechanical oscillators or even macroscopic systems.

3.
Nat Mater ; 22(5): 576-582, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36928382

RESUMO

Quantum materials can display physical phenomena rooted in the geometry of electronic wavefunctions. The corresponding geometric tensor is characterized by an emergent field known as the Berry curvature (BC). Large BCs typically arise when electronic states with different spin, orbital or sublattice quantum numbers hybridize at finite crystal momentum. In all the materials known to date, the BC is triggered by the hybridization of a single type of quantum number. Here we report the discovery of the first material system having both spin- and orbital-sourced BC: LaAlO3/SrTiO3 interfaces grown along the [111] direction. We independently detect these two sources and probe the BC associated to the spin quantum number through the measurements of an anomalous planar Hall effect. The observation of a nonlinear Hall effect with time-reversal symmetry signals large orbital-mediated BC dipoles. The coexistence of different forms of BC enables the combination of spintronic and optoelectronic functionalities in a single material.

4.
Sci Rep ; 12(1): 10744, 2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35750790

RESUMO

Quantum information processing requires fast manipulations of quantum systems in order to overcome dissipative effects. We propose a method to accelerate quantum dynamics and obtain a target state in a shorter time relative to unmodified dynamics, and apply the theory to a system consisting of two linearly coupled qubits. We extend the technique to accelerate quantum adiabatic evolution in order to rapidly generate a desired target state, thereby realizing a shortcut to adiabaticity. Further, we address experimental limitations to the rate of change of control parameters for quantum devices which often limit one's ability to generate a desired target state with high fidelity. We show that an initial state following decelerated dynamics can reach a target state while varying control parameters more slowly, enabling more experimentally feasible driving schemes.

5.
Science ; 363(6431): 1072-1075, 2019 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-30846596

RESUMO

Detecting weak radio-frequency electromagnetic fields plays a crucial role in a wide range of fields, from radio astronomy to nuclear magnetic resonance imaging. In quantum optics, the ultimate limit of a weak field is a single photon. Detecting and manipulating single photons at megahertz frequencies presents a challenge because, even at cryogenic temperatures, thermal fluctuations are appreciable. Using a gigahertz superconducting qubit, we observed the quantization of a megahertz radio-frequency resonator, cooled it to the ground state, and stabilized Fock states. Releasing the resonator from our control, we observed its rethermalization with nanosecond resolution. Extending circuit quantum electrodynamics to the megahertz regime, we have enabled the exploration of thermodynamics at the quantum scale and allowed interfacing quantum circuits with megahertz systems such as spin systems or macroscopic mechanical oscillators.

6.
Phys Rev Lett ; 122(3): 036801, 2019 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-30735404

RESUMO

We explore the superconducting phase diagram of the two-dimensional electron system at the LaAlO_{3}/SrTiO_{3} interface by monitoring the frequencies of the cavity modes of a coplanar waveguide resonator fabricated in the interface itself. We determine the phase diagram of the superconducting transition as a function of the temperature and electrostatic gating, finding that both the superfluid density and the transition temperature follow a dome shape but that the two are not monotonically related. The ground state of this two-dimensional electron system is interpreted as a Josephson junction array, where a transition from long- to short-range order occurs as a function of the electronic doping. The synergy between correlated oxides and superconducting circuits is revealed to be a promising route to investigate these exotic compounds, complementary to standard magnetotransport measurements.

7.
Nat Commun ; 9(1): 4069, 2018 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-30287816

RESUMO

Josephson junctions (JJ) are a fundamental component of microwave quantum circuits, such as tunable cavities, qubits, and parametric amplifiers. Recently developed encapsulated graphene JJs, with supercurrents extending over micron distance scales, have exciting potential applications as a new building block for quantum circuits. Despite this, the microwave performance of this technology has not been explored. Here, we demonstrate a microwave circuit based on a ballistic graphene JJ embedded in a superconducting cavity. We directly observe a gate-tunable Josephson inductance through the resonance frequency of the device and, using a detailed RF model, we extract this inductance quantitatively. We also observe the microwave losses of the device, and translate this into sub-gap resistances of the junction at µeV energy scales, not accessible in DC measurements. The microwave performance we observe here suggests that graphene Josephson junctions are a feasible platform for implementing coherent quantum circuits.

8.
Phys Rev Lett ; 121(12): 127704, 2018 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-30296145

RESUMO

Carbon nanotubes continue to be model systems for studies of confinement and interactions. This is particularly true in the case of so-called "ultraclean" carbon nanotube devices offering the study of quantum dots with extremely low disorder. The quality of such systems, however, has increasingly revealed glaring discrepancies between experiment and theory. Here, we address the outstanding anomaly of exceptionally large orbital magnetic moments in carbon nanotube quantum dots. We perform low temperature magnetotransport measurements of the orbital magnetic moment and find it is up to 7 times larger than expected from the conventional semiclassical model. Moreover, the magnitude of the magnetic moment monotonically drops with the addition of each electron to the quantum dot directly contradicting the widely accepted shell filling picture of single-particle levels. We carry out quasiparticle calculations, both from first principles and within the effective-mass approximation, and find the giant magnetic moments can only be captured by considering a self-energy correction to the electronic band structure due to electron-electron interactions.

9.
Sci Rep ; 7(1): 8828, 2017 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-28821825

RESUMO

Carbon nanotubes (CNTs) are a promising material for high-performance electronics beyond silicon. But unlike silicon, the nature of the transport band gap in CNTs is not fully understood. The transport gap in CNTs is predicted to be strongly driven by electron-electron (e-e) interactions and correlations, even at room temperature. Here, we use dielectric liquids to screen e-e interactions in individual suspended ultra-clean CNTs. Using multiple techniques, the transport gap is measured as dielectric screening is increased. Changing the dielectric environment from air to isopropanol, we observe a 25% reduction in the transport gap of semiconducting CNTs, and a 32% reduction in the band gap of narrow-gap CNTs. Additional measurements are reported in dielectric oils. Our results elucidate the nature of the transport gap in CNTs, and show that dielectric environment offers a mechanism for significant control over the transport band gap.

10.
Nat Commun ; 7: 11043, 2016 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-26984768

RESUMO

The ability to exfoliate layered materials down to the single layer limit has presented the opportunity to understand how a gradual reduction in dimensionality affects the properties of bulk materials. Here we use this top-down approach to address the problem of superconductivity in the two-dimensional limit. The transport properties of electronic devices based on 2H tantalum disulfide flakes of different thicknesses are presented. We observe that superconductivity persists down to the thinnest layer investigated (3.5 nm), and interestingly, we find a pronounced enhancement in the critical temperature from 0.5 to 2.2 K as the layers are thinned down. In addition, we propose a tight-binding model, which allows us to attribute this phenomenon to an enhancement of the effective electron-phonon coupling constant. This work provides evidence that reducing the dimensionality can strengthen superconductivity as opposed to the weakening effect that has been reported in other 2D materials so far.

11.
Nat Commun ; 6: 8491, 2015 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-26450772

RESUMO

In cavity optomechanics, light is used to control mechanical motion. A central goal of the field is achieving single-photon strong coupling, which would enable the creation of quantum superposition states of motion. Reaching this limit requires significant improvements in optomechanical coupling and cavity coherence. Here we introduce an optomechanical architecture consisting of a silicon nitride membrane coupled to a three-dimensional superconducting microwave cavity. Exploiting their large quality factors, we achieve an optomechanical cooperativity of 146,000 and perform sideband cooling of the kilohertz-frequency membrane motion to 34±5 µK, the lowest mechanical mode temperature reported to date. The achieved cooling is limited only by classical noise of the signal generator, and should extend deep into the ground state with superconducting filters. Our results suggest that this realization of optomechanics has the potential to reach the regimes of ultra-large cooperativity and single-photon strong coupling, opening up a new generation of experiments.

12.
Nanoscale ; 7(37): 15442-9, 2015 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-26335856

RESUMO

The semiconducting p-n junction is a simple device structure with great relevance for electronic and optoelectronic applications. The successful integration of low-dimensional materials in electronic circuits has opened the way forward for producing gate-tunable p-n junctions. In that context, we present here an organic (Cu-phthalocyanine)-2D layered material (MoS2) hybrid p-n junction with both gate-tunable diode characteristics and photovoltaic effect. Our proof-of-principle devices show multifunctional properties with diode rectifying factors of up to 10(4), while under light exposure they exhibit photoresponse with a measured external quantum efficiency of ∼11%. As for their photovoltaic properties, we found open circuit voltages of up to 0.6 V and optical-to-electrical power conversion efficiency of 0.7%. The extended catalogue of known organic semiconductors and two-dimensional materials offer the prospect for tailoring the properties and the performance of the resulting devices, making organic-2D p-n junctions promising candidates for future technological applications.

13.
Chem Soc Rev ; 44(11): 3691-718, 2015 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-25909688

RESUMO

Two-dimensional (2D) materials have attracted a great deal of interest in recent years. This family of materials allows for the realization of versatile electronic devices and holds promise for next-generation (opto)electronics. Their electronic properties strongly depend on the number of layers, making them interesting from a fundamental standpoint. For electronic applications, semiconducting 2D materials benefit from sizable mobilities and large on/off ratios, due to the large modulation achievable via the gate field-effect. Moreover, being mechanically strong and flexible, these materials can withstand large strain (>10%) before rupture, making them interesting for strain engineering and flexible devices. Even in their single layer form, semiconducting 2D materials have demonstrated efficient light absorption, enabling large responsivity in photodetectors. Therefore, semiconducting layered 2D materials are strong candidates for optoelectronic applications, especially for photodetection. Here, we review the state-of-the-art in photodetectors based on semiconducting 2D materials, focusing on the transition metal dichalcogenides, novel van der Waals materials, black phosphorus, and heterostructures.

14.
Nat Commun ; 5: 5819, 2014 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-25524228

RESUMO

In physical systems, decoherence can arise from both dissipative and dephasing processes. In mechanical resonators, the driven frequency response measures a combination of both, whereas time-domain techniques such as ringdown measurements can separate the two. Here we report the first observation of the mechanical ringdown of a carbon nanotube mechanical resonator. Comparing the mechanical quality factor obtained from frequency- and time-domain measurements, we find a spectral quality factor four times smaller than that measured in ringdown, demonstrating dephasing-induced decoherence of the nanomechanical motion. This decoherence is seen to arise at high driving amplitudes, pointing to a nonlinear dephasing mechanism. Our results highlight the importance of time-domain techniques for understanding dissipation in nanomechanical resonators, and the relevance of decoherence mechanisms in nanotube mechanics.

15.
Nano Lett ; 14(10): 5846-52, 2014 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-25232893

RESUMO

Tungsten diselenide (WSe2), a semiconducting transition metal dichalcogenide (TMDC), shows great potential as active material in optoelectronic devices due to its ambipolarity and direct bandgap in its single-layer form. Recently, different groups have exploited the ambipolarity of WSe2 to realize electrically tunable PN junctions, demonstrating its potential for digital electronics and solar cell applications. In this Letter, we focus on the different photocurrent generation mechanisms in a double-gated WSe2 device by measuring the photocurrent (and photovoltage) as the local gate voltages are varied independently in combination with above- and below-bandgap illumination. This enables us to distinguish between two main photocurrent generation mechanisms, the photovoltaic and photothermoelectric effect. We find that the dominant mechanism depends on the defined gate configuration. In the PN and NP configurations, photocurrent is mainly generated by the photovoltaic effect and the device displays a maximum responsivity of 0.70 mA/W at 532 nm illumination and rise and fall times close to 10 ms. Photocurrent generated by the photothermoelectric effect emerges in the PP configuration and is a factor of 2 larger than the current generated by the photovoltaic effect (in PN and NP configurations). This demonstrates that the photothermoelectric effect can play a significant role in devices based on WSe2 where a region of strong optical absorption, caused by, for example, an asymmetry in flake thickness or optical absorption of the electrodes, generates a sizable thermal gradient upon illumination.

16.
Nat Commun ; 5: 4651, 2014 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-25164986

RESUMO

In conventional photovoltaic solar cells, photogenerated carriers are extracted by the built-in electric field of a semiconductor PN junction, defined by ionic dopants. In atomically thin semiconductors, the doping level can be controlled by the field effect, enabling the implementation of electrically tunable PN junctions. However, most two-dimensional (2D) semiconductors do not show ambipolar transport, which is necessary to realize PN junctions. Few-layer black phosphorus (b-P) is a recently isolated 2D semiconductor with direct bandgap, high mobility, large current on/off ratios and ambipolar operation. Here we fabricate few-layer b-P field-effect transistors with split gates and hexagonal boron nitride dielectric. We demonstrate electrostatic control of the local charge carrier type and density in the device. Illuminating a gate-defined PN junction, we observe zero-bias photocurrents and significant open-circuit voltages due to the photovoltaic effect. The small bandgap of the material allows power generation for illumination wavelengths up to 940 nm, attractive for energy harvesting in the near-infrared.

17.
Nano Lett ; 14(6): 3347-52, 2014 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-24821381

RESUMO

Few-layer black phosphorus, a new elemental two-dimensional (2D) material recently isolated by mechanical exfoliation, is a high-mobility layered semiconductor with a direct bandgap that is predicted to strongly depend on the number of layers, from 0.35 eV (bulk) to 2.0 eV (single layer). Therefore, black phosphorus is an appealing candidate for tunable photodetection from the visible to the infrared part of the spectrum. We study the photoresponse of field-effect transistors (FETs) made of few-layer black phosphorus (3-8 nm thick), as a function of excitation wavelength, power, and frequency. In the dark state, the black phosphorus FETs can be tuned both in hole and electron doping regimes allowing for ambipolar operation. We measure mobilities in the order of 100 cm(2)/V s and a current ON/OFF ratio larger than 10(3). Upon illumination, the black phosphorus transistors show a response to excitation wavelengths from the visible region up to 940 nm and a rise time of about 1 ms, demonstrating broadband and fast detection. The responsivity reaches 4.8 mA/W, and it could be drastically enhanced by engineering a detector based on a PN junction. The ambipolar behavior coupled to the fast and broadband photodetection make few-layer black phosphorus a promising 2D material for photodetection across the visible and near-infrared part of the electromagnetic spectrum.


Assuntos
Luz , Transistores Eletrônicos
18.
Adv Mater ; 25(46): 6719-23, 2013 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-24123458

RESUMO

Mechanical resonators are fabricated from freely suspended single-layer MoS2 . Their dynamics  have been studied by optical interferometry. These resonators behave as membranes with resonance frequencies in between 10 and 30 MHz and quality factors in between 16 and 109. We also demonstrate clear signatures of nonlinear resonance in these atomically thin resonators.

19.
Nano Lett ; 13(11): 5361-6, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24083520

RESUMO

Controlling the bandstructure through local-strain engineering is an exciting avenue for tailoring optoelectronic properties of materials at the nanoscale. Atomically thin materials are particularly well-suited for this purpose because they can withstand extreme nonhomogeneous deformations before rupture. Here, we study the effect of large localized strain in the electronic bandstructure of atomically thin MoS2. Using photoluminescence imaging, we observe a strain-induced reduction of the direct bandgap and funneling of photogenerated excitons toward regions of higher strain. To understand these results, we develop a nonuniform tight-binding model to calculate the electronic properties of MoS2 nanolayers with complex and realistic local strain geometries, finding good agreement with our experimental results.

20.
Nano Lett ; 13(2): 358-63, 2013 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-23301811

RESUMO

We study the photoresponse of single-layer MoS(2) field-effect transistors by scanning photocurrent microscopy. We find that, unlike in many other semiconductors, the photocurrent generation in single-layer MoS(2) is dominated by the photothermoelectric effect and not by the separation of photoexcited electron-hole pairs across the Schottky barriers at the MoS(2)/electrode interfaces. We observe a large value for the Seebeck coefficient for single-layer MoS(2) that by an external electric field can be tuned between -4 × 10(2) and -1 × 10(5) µV K(-1). This large and tunable Seebeck coefficient of the single-layer MoS(2) paves the way to new applications of this material such as on-chip thermopower generation and waste thermal energy harvesting.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA