Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Sci Adv ; 10(21): eadl5762, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38787940

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is characterized by highly heterogeneous manifestations ranging from asymptomatic cases to death for still incompletely understood reasons. As part of the IMmunoPhenotyping Assessment in a COVID-19 Cohort study, we mapped the plasma proteomes of 1117 hospitalized patients with COVID-19 from 15 hospitals across the United States. Up to six samples were collected within ~28 days of hospitalization resulting in one of the largest COVID-19 plasma proteomics cohorts with 2934 samples. Using perchloric acid to deplete the most abundant plasma proteins allowed for detecting 2910 proteins. Our findings show that increased levels of neutrophil extracellular trap and heart damage markers are associated with fatal outcomes. Our analysis also identified prognostic biomarkers for worsening severity and death. Our comprehensive longitudinal plasma proteomics study, involving 1117 participants and 2934 samples, allowed for testing the generalizability of the findings of many previous COVID-19 plasma proteomics studies using much smaller cohorts.


Assuntos
Biomarcadores , COVID-19 , Hospitalização , Proteoma , Proteômica , SARS-CoV-2 , Humanos , COVID-19/sangue , COVID-19/diagnóstico , COVID-19/virologia , Proteômica/métodos , Feminino , Masculino , SARS-CoV-2/isolamento & purificação , Pessoa de Meia-Idade , Estudos Longitudinais , Idoso , Biomarcadores/sangue , Proteoma/análise , Índice de Gravidade de Doença , Proteínas Sanguíneas/análise , Prognóstico , Adulto
2.
Nat Protoc ; 19(4): 1235-1251, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38291250

RESUMO

Tau protein aggregation is associated with posttranslational modifications (PTMs) in 75% of all dementia cases. The distribution of tau pathology and the presence of specific tau phosphorylation sites of interest are typically visualized and measured using antibodies. However, previous knowledge of the target epitopes is required. Additionally, antibodies can be used in a semi-quantitative manner but cannot be used to determine the absolute amount of tau or the extent of the modifications at specific sites or domains. Here we present a discovery assay that characterizes the global qualitative and quantitative tau modification landscape of a sample without a priori knowledge. Our workflow uses sarkosyl fractionation to extract the pathological tau species from sample-limited brain specimens, followed by mass spectrometry (MS) to characterize and quantify tau PTMs. The two-step MS-based proteomics approach includes an exploratory tau PTM analysis and a targeted full-length expressed stable isotope-labeled tau assay, which monitors specific unmodified tau peptides using a heavy isotope-labeled internal standard as a reference. This enables the absolute quantification of the respective tau peptides and the total tau amount in the sample, thus providing the modification extent of tau PTMs. This approach provides precise, comprehensive, qualitative and quantitative tau PTM profiling of the sample. It also enables the detailed molecular comparison of tau across multiple experiments, including a comparison between neurodegenerative diseases, stages of the disease, human patient heterogeneity and characterization of animal models. The approach is useful for studying the molecular features of pathological tau in neurodegeneration. The procedure requires 7-8 d and is suitable for users with expertise in targeted and untargeted MS-based protein analysis.


Assuntos
Processamento de Proteína Pós-Traducional , Sarcosina/análogos & derivados , Proteínas tau , Animais , Humanos , Espectrometria de Massas/métodos , Proteínas tau/química , Peptídeos , Isótopos
3.
Brain ; 147(2): 637-648, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38236720

RESUMO

Aggregation prone molecules, such as tau, form both historically well characterized fibrillar deposits (neurofibrillary tangles) and recently identified phosphate-buffered saline (PBS) extract species called proteopathic seeds. Both can cause normal endogenous tau to undergo templated misfolding. The relationship of these seeds to the fibrils that define tau-related diseases is unknown. We characterized the aqueous extractable and sarkosyl insoluble fibrillar tau species derived from human Alzheimer brain using mass spectrometry and in vitro bioassays. Post-translational modifications (PTMs) including phosphorylation, acetylation and ubiquitination are identified in both preparations. PBS extract seed competent tau can be distinguished from sarkosyl insoluble tau by the presence of overlapping, but less abundant, PTMs and an absence of some PTMs unique to the latter. The presence of ubiquitin and other PTMs on the PBS-extracted tau species correlates with the amount of tau in the seed competent size exclusion fractions, with the bioactivity and with the aggressiveness of clinical disease. These results demonstrate that the PTMs present on bioactive, seed competent PBS extract tau species are closely related to, but distinct from, the PTMs of mature paired helical filaments, consistent with the idea that they are a forme fruste of tau species that ultimately form fibrils.


Assuntos
Doença de Alzheimer , Emaranhados Neurofibrilares , Humanos , Emaranhados Neurofibrilares/metabolismo , Doença de Alzheimer/metabolismo , Proteínas tau/metabolismo , Processamento de Proteína Pós-Traducional , Fosforilação
4.
iScience ; 26(7): 106909, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37332674

RESUMO

Characterizing perturbation of molecular pathways in congenital Zika virus (ZIKV) infection is critical for improved therapeutic approaches. Leveraging integrative systems biology, proteomics, and RNA-seq, we analyzed embryonic brain tissues from an immunocompetent, wild-type congenital ZIKV infection mouse model. ZIKV induced a robust immune response accompanied by the downregulation of critical neurodevelopmental gene programs. We identified a negative correlation between ZIKV polyprotein abundance and host cell cycle-inducing proteins. We further captured the downregulation of genes/proteins, many of which are known to be causative for human microcephaly, including Eomesodermin/T-box Brain Protein 2 (EOMES/TBR2) and Neuronal Differentiation 2 (NEUROD2). Disturbances of distinct molecular pathways in neural progenitors and post-mitotic neurons may contribute to complex brain phenotype of congenital ZIKV infection. Overall, this report on protein- and transcript-level dynamics enhances understanding of the ZIKV immunopathological landscape through characterization of fetal immune response in the developing brain.

5.
Cell Rep Med ; 4(4): 101005, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37075703

RESUMO

To develop therapies for Alzheimer's disease, we need accurate in vivo diagnostics. Multiple proteomic studies mapping biomarker candidates in cerebrospinal fluid (CSF) resulted in little overlap. To overcome this shortcoming, we apply the rarely used concept of proteomics meta-analysis to identify an effective biomarker panel. We combine ten independent datasets for biomarker identification: seven datasets from 150 patients/controls for discovery, one dataset with 20 patients/controls for down-selection, and two datasets with 494 patients/controls for validation. The discovery results in 21 biomarker candidates and down-selection in three, to be validated in the two additional large-scale proteomics datasets with 228 diseased and 266 control samples. This resulting 3-protein biomarker panel differentiates Alzheimer's disease (AD) from controls in the two validation cohorts with areas under the receiver operating characteristic curve (AUROCs) of 0.83 and 0.87, respectively. This study highlights the value of systematically re-analyzing previously published proteomics data and the need for more stringent data deposition.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/diagnóstico , Proteômica/métodos , Biomarcadores/líquido cefalorraquidiano , Curva ROC
6.
Sci Adv ; 9(13): eadf9717, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36989362

RESUMO

We introduce a cost-effective, robust high-throughput-compatible plasma depletion method enabling in-depth profiling of plasma that detects >1300 proteins per run with a throughput of 60 samples per day. The method has been fully validated by processing >3000 samples with no apparent batch effect at a cost for the depletion step of ~$2.5 per sample.


Assuntos
Proteínas , Proteômica , Análise Custo-Benefício , Proteômica/métodos
7.
Mol Neurodegener ; 18(1): 10, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36732784

RESUMO

BACKGROUND: Mouse models that overexpress human mutant Tau (P301S and P301L) are commonly used in preclinical studies of Alzheimer's Disease (AD) and while several drugs showed therapeutic effects in these mice, they were ineffective in humans. This leads to the question to which extent the murine models reflect human Tau pathology on the molecular level. METHODS: We isolated insoluble, aggregated Tau species from two common AD mouse models during different stages of disease and characterized the modification landscape of the aggregated Tau using targeted and untargeted mass spectrometry-based proteomics. The results were compared to human AD and to human patients that suffered from early onset dementia and that carry the P301L Tau mutation. RESULTS: Both mouse models accumulate insoluble Tau species during disease. The Tau aggregation is driven by progressive phosphorylation within the proline rich domain and the C-terminus of the protein. This is reflective of early disease stages of human AD and of the pathology of dementia patients carrying the P301L Tau mutation. However, Tau ubiquitination and acetylation, which are important to late-stage human AD are not represented in the mouse models. CONCLUSION: AD mouse models that overexpress human Tau using risk mutations are a suitable tool for testing drug candidates that aim to intervene in the early formation of insoluble Tau species promoted by increased phosphorylation of Tau.


Assuntos
Doença de Alzheimer , Tauopatias , Humanos , Camundongos , Animais , Proteínas tau/genética , Proteínas tau/metabolismo , Camundongos Transgênicos , Tauopatias/metabolismo , Doença de Alzheimer/metabolismo , Fosforilação , Modelos Animais de Doenças
8.
Viruses ; 14(12)2022 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-36560759

RESUMO

Herpesviruses have complex mechanisms enabling infection of the human CNS and evasion of the immune system, allowing for indefinite latency in the host. Herpesvirus infections can cause severe complications of the central nervous system (CNS). Here, we provide a novel characterization of cerebrospinal fluid (CSF) proteomes from patients with meningitis or encephalitis caused by human herpes simplex virus 1 (HSV-1), which is the most prevalent human herpesvirus associated with the most severe morbidity. The CSF proteome was compared with those from patients with meningitis or encephalitis due to human herpes simplex virus 2 (HSV-2) or varicella-zoster virus (VZV, also known as human herpesvirus 3) infections. Virus-specific differences in CSF proteomes, most notably elevated 14-3-3 family proteins and calprotectin (i.e., S100-A8 and S100-A9), were observed in HSV-1 compared to HSV-2 and VZV samples, while metabolic pathways related to cellular and small molecule metabolism were downregulated in HSV-1 infection. Our analyses show the feasibility of developing CNS proteomic signatures of the host response in alpha herpes infections, which is paramount for targeted studies investigating the pathophysiology driving virus-associated neurological disorders, developing biomarkers of morbidity, and generating personalized therapeutic strategies.


Assuntos
Encefalite , Infecções por Herpesviridae , Herpesvirus Humano 1 , Meningite , Humanos , Proteoma , Proteômica , Sistema Nervoso Central , Herpesvirus Humano 3 , Herpesvirus Humano 2
9.
J Proteome Res ; 21(11): 2810-2814, 2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36201825

RESUMO

Combining robust proteomics instrumentation with high-throughput enabling liquid chromatography (LC) systems (e.g., timsTOF Pro and the Evosep One system, respectively) enabled mapping the proteomes of 1000s of samples. Fragpipe is one of the few computational protein identification and quantification frameworks that allows for the time-efficient analysis of such large data sets. However, it requires large amounts of computational power and data storage space that leave even state-of-the-art workstations underpowered when it comes to the analysis of proteomics data sets with 1000s of LC mass spectrometry runs. To address this issue, we developed and optimized a Fragpipe-based analysis strategy for a high-performance computing environment and analyzed 3348 plasma samples (6.4 TB) that were longitudinally collected from hospitalized COVID-19 patients under the auspice of the Immunophenotyping Assessment in a COVID-19 Cohort (IMPACC) study. Our parallelization strategy reduced the total runtime by ∼90% from 116 (theoretical) days to just 9 days in the high-performance computing environment. All code is open-source and can be deployed in any Simple Linux Utility for Resource Management (SLURM) high-performance computing environment, enabling the analysis of large-scale high-throughput proteomics studies.


Assuntos
COVID-19 , Humanos , Cromatografia Líquida/métodos , Proteômica/métodos , Espectrometria de Massas/métodos , Proteoma/análise
10.
J Neurovirol ; 28(3): 341-354, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35639337

RESUMO

State-of-the-art liquid chromatography/mass spectrometry (LC/MS)-based proteomic technologies, using microliter amounts of patient plasma, can detect and quantify several hundred plasma proteins in a high throughput fashion, allowing for the discovery of clinically relevant protein biomarkers and insights into the underlying pathobiological processes. Using such an in-house developed high throughput plasma proteomics allowed us to identify and quantify > 400 plasmas proteins in 15 min per sample, i.e., a throughput of 100 samples/day. We demonstrated the clinical applicability of our method in this pilot study by mapping the plasma proteomes from patients infected with human immunodeficiency virus (HIV) or herpes virus, both groups with involvement of the central nervous system (CNS). We found significant disease-specific differences in the plasma proteomes. The most notable difference was a decrease in the levels of several coagulation-associated proteins in HIV vs. herpes virus, among other dysregulated biological pathways providing insight into the differential pathophysiology of HIV compared to herpes virus infection. In a subsequent analysis, we found several plasma proteins associated with immunity and metabolism to differentiate patients with HIV-associated neurocognitive disorders (HAND) compared to cognitively normal people with HIV (PWH), suggesting the presence of plasma-based biomarkers to distinguishing HAND from cognitively normal PWH. Overall, our high-throughput plasma proteomics pipeline enables the identification of distinct proteomic signatures of HIV and herpes virus, which may help illuminate divergent pathophysiology behind virus-associated neurological disorders.


Assuntos
Infecções por HIV , Proteômica , Biomarcadores , Sistema Nervoso Central , Infecções por HIV/complicações , Humanos , Transtornos Neurocognitivos , Projetos Piloto , Proteoma , Proteômica/métodos
11.
J Proteome Res ; 21(4): 899-909, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35086334

RESUMO

In liquid-chromatography-tandem-mass-spectrometry-based proteomics, information about the presence and stoichiometry of protein modifications is not readily available. To overcome this problem, we developed multiFLEX-LF, a computational tool that builds upon FLEXIQuant, which detects modified peptide precursors and quantifies their modification extent by monitoring the differences between observed and expected intensities of the unmodified precursors. multiFLEX-LF relies on robust linear regression to calculate the modification extent of a given precursor relative to a within-study reference. multiFLEX-LF can analyze entire label-free discovery proteomics data sets in a precursor-centric manner without preselecting a protein of interest. To analyze modification dynamics and coregulated modifications, we hierarchically clustered the precursors of all proteins based on their computed relative modification scores. We applied multiFLEX-LF to a data-independent-acquisition-based data set acquired using the anaphase-promoting complex/cyclosome (APC/C) isolated at various time points during mitosis. The clustering of the precursors allows for identifying varying modification dynamics and ordering the modification events. Overall, multiFLEX-LF enables the fast identification of potentially differentially modified peptide precursors and the quantification of their differential modification extent in large data sets using a personal computer. Additionally, multiFLEX-LF can drive the large-scale investigation of the modification dynamics of peptide precursors in time-series and case-control studies. multiFLEX-LF is available at https://gitlab.com/SteenOmicsLab/multiflex-lf.


Assuntos
Proteínas , Proteômica , Cromatografia Líquida , Espectrometria de Massas , Peptídeos
12.
Neonatology ; 119(2): 193-203, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35073553

RESUMO

INTRODUCTION: Current techniques to diagnose and/or monitor critically ill neonates with bronchopulmonary dysplasia (BPD) require invasive sampling of body fluids, which is suboptimal in these frail neonates. We tested our hypothesis that it is feasible to use noninvasively collected urine samples for proteomics from extremely low gestational age newborns (ELGANs) at risk for BPD to confirm previously identified proteins and biomarkers associated with BPD. METHODS: We developed a robust high-throughput urine proteomics methodology that requires only 50 µL of urine. We utilized the methodology with a proof-of-concept study validating proteins previously identified in invasively collected sample types such as blood and/or tracheal aspirates on urine collected within 72 h of birth from ELGANs (gestational age [26 ± 1.2] weeks) who were admitted to a single Neonatal Intensive Care Unit (NICU), half of whom eventually developed BPD (n = 21), while the other half served as controls (n = 21). RESULTS: Our high-throughput urine proteomics approach clearly identified several BPD-associated changes in the urine proteome recapitulating expected blood proteome changes, and several urinary proteins predicted BPD risk. Interestingly, 16 of the identified urinary proteins are known targets of drugs approved by the Food and Drug Administration. CONCLUSION: In addition to validating numerous proteins, previously found in invasively collected blood, tracheal aspirate, and bronchoalveolar lavage, that have been implicated in BPD pathophysiology, urine proteomics also suggested novel potential therapeutic targets. Ease of access to urine could allow for sequential proteomic evaluations for longitudinal monitoring of disease progression and impact of therapeutic intervention in future studies.


Assuntos
Líquidos Corporais , Displasia Broncopulmonar , Biomarcadores , Líquidos Corporais/metabolismo , Displasia Broncopulmonar/complicações , Idade Gestacional , Humanos , Lactente , Recém-Nascido , Proteoma , Proteômica
14.
J Cell Biol ; 220(10)2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34342639

RESUMO

Mitochondrial movement and distribution are fundamental to their function. Here we report a mechanism that regulates mitochondrial movement by anchoring mitochondria to the F-actin cytoskeleton. This mechanism is activated by an increase in glucose influx and the consequent O-GlcNAcylation of TRAK (Milton), a component of the mitochondrial motor-adaptor complex. The protein four and a half LIM domains protein 2 (FHL2) serves as the anchor. FHL2 associates with O-GlcNAcylated TRAK and is both necessary and sufficient to drive the accumulation of F-actin around mitochondria and to arrest mitochondrial movement by anchoring to F-actin. Disruption of F-actin restores mitochondrial movement that had been arrested by either TRAK O-GlcNAcylation or forced direction of FHL2 to mitochondria. This pathway for mitochondrial immobilization is present in both neurons and non-neuronal cells and can thereby adapt mitochondrial dynamics to changes in glucose availability.


Assuntos
Actinas/metabolismo , Glucose/metabolismo , Proteínas com Homeodomínio LIM/metabolismo , Mitocôndrias/metabolismo , Proteínas Musculares/metabolismo , Fatores de Transcrição/metabolismo , Animais , Células Cultivadas , Humanos , Dinâmica Mitocondrial , Ratos
15.
J Neurochem ; 158(5): 1058-1073, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34077555

RESUMO

Activity-regulated cytoskeleton-associated protein (Arc) is an immediate early gene product that support neuroplastic changes important for cognitive function and memory formation. As a protein with homology to the retroviral Gag protein, a particular characteristic of Arc is its capacity to self-assemble into virus-like capsids that can package mRNAs and transfer those transcripts to other cells. Although a lot has been uncovered about the contributions of Arc to neuron biology and behavior, very little is known about how different functions of Arc are coordinately regulated both temporally and spatially in neurons. The answer to this question we hypothesized must involve the occurrence of different protein post-translational modifications acting to confer specificity. In this study, we used mass spectrometry and sequence prediction strategies to map novel Arc phosphorylation sites. Our approach led us to recognize serine 67 (S67) and threonine 278 (T278) as residues that can be modified by TNIK, which is a kinase abundantly expressed in neurons that shares many functional overlaps with Arc and has, along with its interacting proteins such as the NMDA receptor, and been implicated as a risk factor for psychiatric disorders. Furthermore, characterization of each residue using site-directed mutagenesis to create S67 and T278 mutant variants revealed that TNIK action at those amino acids can strongly influence Arc's subcellular distribution and self-assembly as capsids. Together, our findings reveal an unsuspected connection between Arc and TNIK. Better understanding of the interplay between these two proteins in neuronal cells could lead to new insights about apparition and progression of psychiatric disorders. Cover Image for this issue: https://doi.org/10.1111/jnc.15077.


Assuntos
Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular Tumoral , Camundongos , Neurônios/metabolismo , Fosforilação/fisiologia
17.
Elife ; 92020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-33284109

RESUMO

Improvements in LC-MS/MS methods and technology have enabled the identification of thousands of modified peptides in a single experiment. However, protein regulation by post-translational modifications (PTMs) is not binary, making methods to quantify the modification extent crucial to understanding the role of PTMs. Here, we introduce FLEXIQuant-LF, a software tool for large-scale identification of differentially modified peptides and quantification of their modification extent without knowledge of the types of modifications involved. We developed FLEXIQuant-LF using label-free quantification of unmodified peptides and robust linear regression to quantify the modification extent of peptides. As proof of concept, we applied FLEXIQuant-LF to data-independent-acquisition (DIA) data of the anaphase promoting complex/cyclosome (APC/C) during mitosis. The unbiased FLEXIQuant-LF approach to assess the modification extent in quantitative proteomics data provides a better understanding of the function and regulation of PTMs. The software is available at https://github.com/SteenOmicsLab/FLEXIQuantLF.


Assuntos
Peptídeos/química , Proteômica/métodos , Software , Algoritmos , Células HeLa , Humanos , Modelos Lineares
18.
Cell ; 183(6): 1699-1713.e13, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33188775

RESUMO

To elucidate the role of Tau isoforms and post-translational modification (PTM) stoichiometry in Alzheimer's disease (AD), we generated a high-resolution quantitative proteomics map of 95 PTMs on multiple isoforms of Tau isolated from postmortem human tissue from 49 AD and 42 control subjects. Although Tau PTM maps reveal heterogeneity across subjects, a subset of PTMs display high occupancy and frequency for AD, suggesting importance in disease. Unsupervised analyses indicate that PTMs occur in an ordered manner, leading to Tau aggregation. The processive addition and minimal set of PTMs associated with seeding activity was further defined by analysis of size-fractionated Tau. To summarize, features in the Tau protein critical for disease intervention at different stages of disease are identified, including enrichment of 0N and 4R isoforms, underrepresentation of the C terminus, an increase in negative charge in the proline-rich region (PRR), and a decrease in positive charge in the microtubule binding domain (MBD).


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Processamento de Proteína Pós-Traducional , Proteínas tau/metabolismo , Estudos de Casos e Controles , Estudos de Coortes , Progressão da Doença , Humanos , Análise de Componente Principal , Isoformas de Proteínas/metabolismo
19.
Nat Med ; 26(8): 1256-1263, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32572268

RESUMO

Alzheimer's disease (AD) causes unrelenting, progressive cognitive impairments, but its course is heterogeneous, with a broad range of rates of cognitive decline1. The spread of tau aggregates (neurofibrillary tangles) across the cerebral cortex parallels symptom severity2,3. We hypothesized that the kinetics of tau spread may vary if the properties of the propagating tau proteins vary across individuals. We carried out biochemical, biophysical, MS and both cell- and animal-based-bioactivity assays to characterize tau in 32 patients with AD. We found striking patient-to-patient heterogeneity in the hyperphosphorylated species of soluble, oligomeric, seed-competent tau. Tau seeding activity correlates with the aggressiveness of the clinical disease, and some post-translational modification (PTM) sites appear to be associated with both enhanced seeding activity and worse clinical outcomes, whereas others are not. These data suggest that different individuals with 'typical' AD may have distinct biochemical features of tau. These data are consistent with the possibility that individuals with AD, much like people with cancer, may have multiple molecular drivers of an otherwise common phenotype, and emphasize the potential for personalized therapeutic approaches for slowing clinical progression of AD.


Assuntos
Doença de Alzheimer/genética , Disfunção Cognitiva/genética , Agregação Patológica de Proteínas/genética , Proteínas tau/genética , Idade de Início , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Disfunção Cognitiva/patologia , Feminino , Heterogeneidade Genética , Humanos , Masculino , Pessoa de Meia-Idade , Emaranhados Neurofibrilares/genética , Emaranhados Neurofibrilares/metabolismo , Emaranhados Neurofibrilares/patologia , Fosforilação , Agregação Patológica de Proteínas/patologia , Índice de Gravidade de Doença
20.
Cell Rep ; 26(3): 594-607.e7, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30650354

RESUMO

Alternative translation initiation and stop codon readthrough in a few well-studied cases have been shown to allow the same transcript to generate multiple protein variants. Because the brain shows a particularly abundant use of alternative splicing, we sought to study alternative translation in CNS cells. We show that alternative translation is widespread and regulated across brain transcripts. In neural cultures, we identify alternative initiation on hundreds of transcripts, confirm several N-terminal protein variants, and show the modulation of the phenomenon by KCl stimulation. We also detect readthrough in cultures and show differential levels of normal and readthrough versions of AQP4 in gliotic diseases. Finally, we couple translating ribosome affinity purification to ribosome footprinting (TRAP-RF) for cell-type-specific analysis of neuronal and astrocytic translational readthrough in the mouse brain. We demonstrate that this unappreciated mechanism generates numerous and diverse protein isoforms in a cell-type-specific manner in the brain.


Assuntos
Encéfalo/metabolismo , Isoformas de Proteínas/metabolismo , Proteômica/métodos , Animais , Encéfalo/patologia , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...