Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomaterials ; 73: 1-11, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26378976

RESUMO

BACKGROUND: Cell death due to anoikis, necrosis and cell egress from transplantation sites limits functional benefits of cellular cardiomyoplasty. Cell dissociation and suspension, which are a pre-requisite for most cell transplantation studies, lead to depression of cellular metabolism and anoikis, which contribute to low engraftment. OBJECTIVE: We tissue engineered scaffolds with the goal of rapidly restoring metabolism, promoting viability, proliferation and engraftment of encapsulated stem cells. METHODS: The carboxyl groups of HA were functionalized with N-hydroxysuccinimide (NHS) to yield HA succinimidyl succinate (HA-NHS) groups that react with free amine groups to form amide bonds. HA-NHS was cross-linked by serum to generate HA:Serum (HA:Ser) hydrogels. Physical properties of HA:Ser hydrogels were measured. Effect of encapsulating cardiosphere-derived cells (CDCs) in HA:Ser hydrogels on viability, proliferation, glucose uptake and metabolism was assessed in vitro. In vivo acute intra-myocardial cell retention of (18)FDG-labeled CDCs encapsulated in HA:Ser hydrogels was quantified. Effect of CDC encapsulation in HA:Ser hydrogels on in vivo metabolism and engraftment at 7 days was assessed by serial, dual isotope SPECT-CT and bioluminescence imaging of CDCs expressing the Na-iodide symporter and firefly luciferase genes respectively. Effect of HA:Ser hydrogels ± CDCs on cardiac function was assessed at 7 days & 28 days post-infarct. RESULTS: HA:Ser hydrogels are highly bio-adhesive, biodegradable, promote rapid cell adhesion, glucose uptake and restore bioenergetics of encapsulated cells within 1 h of encapsulation, both in vitro and in vivo. These metabolic scaffolds can be applied epicardially as a patch to beating hearts or injected intramyocardially. HA:Ser hydrogels markedly increase acute intramyocardial retention (∼6 fold), promote in vivo viability, proliferation, engraftment of encapsulated stem cells and angiogenesis. CONCLUSION: HA:Ser hydrogels serve as 'synthetic stem cell niches' that rapidly restore metabolism of encapsulated stem cells, promote stem cell engraftment and angiogenesis. These first ever, tissue engineered metabolic scaffolds hold promise for clinical translation in conjunction with CDCs and possibly other stem cell types.


Assuntos
Materiais Biocompatíveis/química , Ácido Hialurônico/química , Hidrogéis/química , Transplante de Células-Tronco/métodos , Células-Tronco/citologia , Animais , Adesão Celular , Proliferação de Células , Sobrevivência Celular , Transplante de Células , Ecocardiografia , Módulo de Elasticidade , Células-Tronco Embrionárias/citologia , Feminino , Fluordesoxiglucose F18/química , Glucose/química , Coração/efeitos dos fármacos , Coração/fisiologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Células-Tronco Mesenquimais/citologia , Camundongos , Imagem Multimodal , Miocárdio/metabolismo , Neovascularização Patológica , Ratos , Ratos Endogâmicos WKY , Transplante de Células-Tronco/instrumentação , Engenharia Tecidual , Alicerces Teciduais , Tomografia Computadorizada de Emissão de Fóton Único , Tomografia Computadorizada por Raios X
2.
Biomaterials ; 33(32): 8026-33, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22898181

RESUMO

Tissue engineering-based approaches have the potential to improve stem cell engraftment by increasing cell delivery to the myocardium. Our objective was to develop and characterize a naturally-derived, autologous, biodegradable hydrogel in order to improve acute stem cell retention in the myocardium. HA-blood hydrogels (HA-BL) were synthesized by mixing in a 1:1(v/v) ratio, lysed whole blood and hyaluronic acid (HA), whose carboxyl groups were functionalized with N-hydroxysuccinimide (NHS) to yield HA succinimidyl succinate (HA-NHS). We performed physical characterization and measured survival/proliferation of cardiosphere-derived cells (CDCs) encapsulated in the hydrogels. Hydrogels were injected intra-myocardially or applied epicardially in rats. NHS-activated carboxyl groups in HA react with primary amines present in blood and myocardium to form amide bonds, resulting in a 3D hydrogel bound to tissue. HA-blood hydrogels had a gelation time of 58±12 s, swelling ratio of 10±0.5, compressive and elastic modulus of 14±3 and 1.75±0.6 kPa respectively. These hydrogels were not degraded at 4 wks by hydrolysis alone. CDC encapsulation promoted their survival and proliferation. Intra-myocardial injection of CDCs encapsulated in these hydrogels greatly increased acute myocardial retention (p=0.001). Epicardial application of HA-blood hydrogels improved left ventricular ejection fraction following myocardial infarction (p=0.01). HA-blood hydrogels are highly adhesive, biodegradable, promote CDC survival and increase cardiac function following epicardial application after myocardial infarction.


Assuntos
Células Sanguíneas/química , Ácido Hialurônico/química , Hidrogéis/química , Miocárdio/citologia , Plasma/química , Transplante de Células-Tronco , Alicerces Teciduais/química , Animais , Células Sanguíneas/metabolismo , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Módulo de Elasticidade , Feminino , Humanos , Ácido Hialurônico/metabolismo , Hidrogéis/metabolismo , Masculino , Infarto do Miocárdio/patologia , Infarto do Miocárdio/cirurgia , Miocárdio/patologia , Plasma/metabolismo , Ratos , Ratos Endogâmicos WKY , Ratos Nus , Succinimidas/química
3.
Biomaterials ; 32(1): 95-106, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20870284

RESUMO

Slow vascularization of functional blood limits the transplantation of tissue constructs and the recovery of ischemic and wounded tissues. Despite the widespread investigation of polysaccharide-based hydrogel scaffolds for their therapeutic applications, blood vessel ingrowth into these hydrogel scaffolds remains a challenge. We hypothesized that modifying the properties of biodegradable hydrogel scaffolds with immobilization of multiple angiogenic growth factors (GFs) would induce a rapid proliferation of functional vasculature into the scaffolds. To this end, we remodeled the hydrogel structure by decreasing crosslinking density via reduced degree of substitution of crosslinking groups, which resulted in improved hydrogel properties including reduced rigidity, increased swelling, increased vascular endothelial GF (VEGF) release capability, and facilitated rapid hydrogel disintegration and tissue ingrowth. Immobilizing VEGF in the scaffolds promoted tissue ingrowth and expedited biodegradation. Furthermore, a synergistic effect of multiple angiogenic GFs was established; the coimmobilization of VEGF+ angiopoietin-1, and VEGF+ insulin-like GF+ stromal cell-derived factor-1 induced more and larger blood vessels than any individual GF, while the combination of all GFs dramatically increased the size and number of newly formed functional vessels. Altogether, our data demonstrate that rapid, efficient, and functional neovascularization can be achieved by precisely manipulating hydrogel scaffold properties and immobilizing defined angiogenic GFs.


Assuntos
Indutores da Angiogênese/farmacologia , Materiais Biocompatíveis/farmacologia , Dextranos/farmacologia , Hidrogéis/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Neovascularização Fisiológica/efeitos dos fármacos , Compostos Alílicos/farmacologia , Animais , Vasos Sanguíneos/efeitos dos fármacos , Vasos Sanguíneos/crescimento & desenvolvimento , Sistemas de Liberação de Medicamentos , Humanos , Isocianatos/farmacologia , Fenômenos Mecânicos/efeitos dos fármacos , Polietilenoglicóis/farmacologia , Implantação de Prótese , Ratos , Alicerces Teciduais , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...