Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ecol Resour ; 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37873890

RESUMO

Advances in sequencing technologies and declining costs are increasing the accessibility of large-scale biodiversity genomic datasets. To maximize the impact of these data, a careful, considered approach to data management is essential. However, challenges associated with the management of such datasets remain, exacerbated by uncertainty among the research community as to what constitutes best practices. As an interdisciplinary team with diverse data management experience, we recognize the growing need for guidance on comprehensive data management practices that minimize the risks of data loss, maximize efficiency for stand-alone projects, enhance opportunities for data reuse, facilitate Indigenous data sovereignty and uphold the FAIR and CARE Guiding Principles. Here, we describe four fictional personas reflecting differing user experiences with data management to identify data management challenges across the biodiversity genomics research ecosystem. We then use these personas to demonstrate realistic considerations, compromises and actions for biodiversity genomic data management. We also launch the Biodiversity Genomics Data Management Hub (https://genomicsaotearoa.github.io/data-management-resources/), containing tips, tricks and resources to support biodiversity genomics researchers, especially those new to data management, in their journey towards best practice. The Hub also provides an opportunity for those biodiversity researchers whose expertise lies beyond genomics and are keen to advance their data management journey. We aim to support the biodiversity genomics community in embedding data management throughout the research lifecycle to maximize research impact and outcomes.

2.
Mol Ecol Resour ; 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37712134

RESUMO

The unprecedented loss of global biodiversity is linked to multiple anthropogenic stressors. New conservation technologies are urgently needed to mitigate this loss. The rights, knowledge and perspectives of Indigenous peoples in biodiversity conservation-including the development and application of new technologies-are increasingly recognised. Advances in germplasm cryopreservation and germ cell transplantation (termed 'broodstock surrogacy') techniques offer exciting tools to preserve biodiversity, but their application has been underappreciated. Here, we use teleost fishes as an exemplar group to outline (1) the power of these techniques to preserve genome-wide genetic diversity, (2) the need to apply a conservation genomic lens when selecting individuals for germplasm cryobanking and broodstock surrogacy and (3) the value of considering the cultural significance of these genomic resources. We conclude by discussing the opportunities and challenges of these techniques for conserving biodiversity in threatened teleost fish and beyond.

3.
Nat Ecol Evol ; 7(10): 1693-1705, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37640765

RESUMO

The kakapo is a critically endangered, intensively managed, long-lived nocturnal parrot endemic to Aotearoa New Zealand. We generated and analysed whole-genome sequence data for nearly all individuals living in early 2018 (169 individuals) to generate a high-quality species-wide genetic variant callset. We leverage extensive long-term metadata to quantify genome-wide diversity of the species over time and present new approaches using probabilistic programming, combined with a phenotype dataset spanning five decades, to disentangle phenotypic variance into environmental and genetic effects while quantifying uncertainty in small populations. We find associations for growth, disease susceptibility, clutch size and egg fertility within genic regions previously shown to influence these traits in other species. Finally, we generate breeding values to predict phenotype and illustrate that active management over the past 45 years has maintained both genome-wide diversity and diversity in breeding values and, hence, evolutionary potential. We provide new pathways for informing future conservation management decisions for kakapo, including prioritizing individuals for translocation and monitoring individuals with poor growth or high disease risk. Overall, by explicitly addressing the challenge of the small sample size, we provide a template for the inclusion of genomic data that will be transformational for species recovery efforts around the globe.


Assuntos
Espécies em Perigo de Extinção , Papagaios , Humanos , Animais , Genômica , Genoma , Nova Zelândia
5.
Mol Ecol Resour ; 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36916824

RESUMO

There is growing interest in the role of structural variants (SVs) as drivers of local adaptation and speciation. From a biodiversity genomics perspective, the characterization of genome-wide SVs provides an exciting opportunity to complement single nucleotide polymorphisms (SNPs). However, little is known about the impacts of SV discovery and genotyping strategies on the characterization of genome-wide SV diversity within and among populations. Here, we explore a near whole-species resequence data set, and long-read sequence data for a subset of highly represented individuals in the critically endangered kakapo (Strigops habroptilus). We demonstrate that even when using a highly contiguous reference genome, different discovery and genotyping strategies can significantly impact the type, size and location of SVs characterized genome-wide. Further, we found that the mean number of SVs in each of two kakapo lineages differed both within and across generations. These combined results suggest that genome-wide characterization of SVs remains challenging at the population-scale. We are optimistic that increased accessibility to long-read sequencing and advancements in bioinformatic approaches including multireference approaches like genome graphs will alleviate at least some of the challenges associated with resolving SV characteristics below the species level. In the meantime, we address caveats, highlight considerations, and provide recommendations for the characterization of genome-wide SVs in biodiversity genomic research.

6.
PeerJ ; 11: e14675, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36755872

RESUMO

Background: Animal conservation often requires intensive management actions to improve reproductive output, yet any adverse effects of these may not be immediately apparent, particularly in threatened species with small populations and long lifespans. Hand-rearing is an example of a conservation management strategy which, while boosting populations, can cause long-term demographic and behavioural problems. It is used in the recovery of the critically endangered kakapo (Strigops habroptilus), a flightless parrot endemic to New Zealand, to improve the slow population growth that is due to infrequent breeding, low fertility and low hatching success. Methods: We applied Bayesian mixed models to examine whether hand-rearing and other factors were associated with clutch fertility in kakapo. We used projection predictive variable selection to compare the relative contributions to fertility from the parents' rearing environment, their age and previous copulation experience, the parental kinship, and the number of mates and copulations for each clutch. We also explored how the incidence of repeated copulations and multiple mates varied with kakapo density. Results: The rearing status of the clutch father and the number of mates and copulations of the clutch mother were the dominant factors in predicting fertility. Clutches were less likely to be fertile if the father was hand-reared compared to wild-reared, but there was no similar effect for mothers. Clutches produced by females copulating with different males were more likely to be fertile than those from repeated copulations with one male, which in turn had a higher probability of fertility than those from a single copulation. The likelihood of multiple copulations and mates increased with female:male adult sex ratio, perhaps as a result of mate guarding by females. Parental kinship, copulation experience and age all had negligible associations with clutch fertility. Conclusions: These results provide a rare assessment of factors affecting fertility in a wild threatened bird species, with implications for conservation management. The increased fertility due to multiple mates and copulations, combined with the evidence for mate guarding and previous results of kakapo sperm morphology, suggests that an evolutionary mechanism exists to optimise fertility through sperm competition in kakapo. The high frequency of clutches produced from single copulations in the contemporary population may therefore represent an unnatural state, perhaps due to too few females. This suggests that opportunity for sperm competition should be maximised by increasing population densities, optimising sex ratios, and using artificial insemination. The lower fertility of hand-reared males may result from behavioural defects due to lack of exposure to conspecifics at critical development stages, as seen in other taxa. This potential negative impact of hand-rearing must be balanced against the short-term benefits it provides.


Assuntos
Papagaios , Sêmen , Animais , Masculino , Feminino , Teorema de Bayes , Fertilidade , Reprodução , Espécies em Perigo de Extinção
7.
Evol Appl ; 15(5): 751-772, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35603033

RESUMO

Relationships with place provide critical context for characterizing biocultural diversity. Yet, genetic and genomic studies are rarely informed by Indigenous or local knowledge, processes, and practices, including the movement of culturally significant species. Here, we show how place-based knowledge can better reveal the biocultural complexities of genetic or genomic data derived from culturally significant species. As a case study, we focus on culturally significant southern freshwater koura (crayfish) in Aotearoa me Te Waipounamu (New Zealand, herein Aotearoa NZ). Our results, based on genotyping-by-sequencing markers, reveal strong population genetic structure along with signatures of population admixture in 19 genetically depauperate populations across the east coast of Te Waipounamu. Environment association and differentiation analyses for local adaptation also indicate a role for hydroclimatic variables-including temperature, precipitation, and water flow regimes-in shaping local adaptation in koura. Through trusted partnerships between community and researchers, weaving genomic markers with place-based knowledge has both provided invaluable context for the interpretation of data and created opportunities to reconnect people and place. We envisage such trusted partnerships guiding future genomic research for culturally significant species in Aotearoa NZ and beyond.

8.
Mol Ecol Resour ; 22(7): 2546-2558, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35510790

RESUMO

Researchers have long debated which estimator of relatedness best captures the degree of relationship between two individuals. In the genomics era, this debate continues, with relatedness estimates being sensitive to the methods used to generate markers, marker quality, and levels of diversity in sampled individuals. Here, we compare six commonly used genome-based relatedness estimators (kinship genetic distance [KGD], Wang maximum likelihood [TrioML], Queller and Goodnight [Rxy ], Kinship INference for Genome-wide association studies [KING-robust), and pairwise relatedness [RAB ], allele-sharing coancestry [AS]) across five species bred in captivity-including three birds and two mammals-with varying degrees of reliable pedigree data, using reduced-representation and whole genome resequencing data. Genome-based relatedness estimates varied widely across estimators, sequencing methods, and species, yet the most consistent results for known first order relationships were found using Rxy , RAB , and AS. However, AS was found to be less consistently correlated with known pedigree relatedness than either Rxy or RAB . Our combined results indicate there is not a single genome-based estimator that is ideal across different species and data types. To determine the most appropriate genome-based relatedness estimator for each new data set, we recommend assessing the relative: (1) correlation of candidate estimators with known relationships in the pedigree and (2) precision of candidate estimators with known first-order relationships. These recommendations are broadly applicable to conservation breeding programmes, particularly where genome-based estimates of relatedness can complement and complete poorly pedigreed populations. Given a growing interest in the application of wild pedigrees, our results are also applicable to in situ wildlife management.


Assuntos
Cruzamento , Estudo de Associação Genômica Ampla , Alelos , Animais , Animais Selvagens , Humanos , Mamíferos , Modelos Genéticos , Linhagem
9.
Mol Ecol Resour ; 22(7): 2810-2825, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35635119

RESUMO

Species recovery programs are increasingly using genomic data to measure neutral genetic diversity and calculate metrics like relatedness. While these measures can inform conservation management, determining the mechanisms underlying inbreeding depression requires information about functional genes associated with adaptive or maladaptive traits. Toll-like receptors (TLRs) are one family of functional genes, which play a crucial role in recognition of pathogens and activation of the immune system. Previously, these genes have been analysed using species-specific primers and PCR. Here, we leverage an existing short-read reference genome, whole-genome resequencing population data set, and bioinformatic tools to characterize TLR gene diversity in captive and wild tchuriwat'/tuturuatu/shore plover (Thinornis novaeseelandiae), a threatened bird endemic to Aotearoa New Zealand. Our results show that TLR gene diversity in tchuriwat'/tuturuatu is low, and forms two distinct captive and wild genetic clusters. The bioinformatic approach presented here has broad applicability to other threatened species with existing genomic resources in Aotearoa New Zealand and beyond.


Assuntos
Espécies em Perigo de Extinção , Receptores Toll-Like , Animais , Aves/genética , Genoma , Análise de Sequência de DNA , Receptores Toll-Like/genética
10.
Mol Ecol ; 31(1): 41-54, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34553796

RESUMO

Over the past 50 years conservation genetics has developed a substantive toolbox to inform species management. One of the most long-standing tools available to manage genetics-the pedigree-has been widely used to characterize diversity and maximize evolutionary potential in threatened populations. Now, with the ability to use high throughput sequencing to estimate relatedness, inbreeding, and genome-wide functional diversity, some have asked whether it is warranted for conservation biologists to continue collecting and collating pedigrees for species management. In this perspective, we argue that pedigrees remain a relevant tool, and when combined with genomic data, create an invaluable resource for conservation genomic management. Genomic data can address pedigree pitfalls (e.g., founder relatedness, missing data, uncertainty), and in return robust pedigrees allow for more nuanced research design, including well-informed sampling strategies and quantitative analyses (e.g., heritability, linkage) to better inform genomic inquiry. We further contend that building and maintaining pedigrees provides an opportunity to strengthen trusted relationships among conservation researchers, practitioners, Indigenous Peoples, and Local Communities.


Assuntos
Genética Populacional , Genômica , Conservação dos Recursos Naturais , Genoma , Endogamia , Linhagem
11.
Mol Ecol ; 30(23): 5949-5965, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34424587

RESUMO

Structural variants (SVs) are large rearrangements (>50 bp) within the genome that impact gene function and the content and structure of chromosomes. As a result, SVs are a significant source of functional genomic variation, that is, variation at genomic regions underpinning phenotype differences, that can have large effects on individual and population fitness. While there are increasing opportunities to investigate functional genomic variation in threatened species via single nucleotide polymorphism (SNP) data sets, SVs remain understudied despite their potential influence on fitness traits of conservation interest. In this future-focused Opinion, we contend that characterizing SVs offers the conservation genomics community an exciting opportunity to complement SNP-based approaches to enhance species recovery. We also leverage the existing literature-predominantly in human health, agriculture and ecoevolutionary biology-to identify approaches for readily characterizing SVs and consider how integrating these into the conservation genomics toolbox may transform the way we manage some of the world's most threatened species.


Assuntos
Genoma , Genômica , Animais , Espécies em Perigo de Extinção , Humanos , Fenótipo
12.
PLoS One ; 15(9): e0238636, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32970696

RESUMO

Statistically robust monitoring of threatened populations is essential for effective conservation management because the population trend data that monitoring generates is often used to make decisions about when and how to take action. Despite representing the highest proportion of threatened animals globally, the development of best practice methods for monitoring populations of threatened insects is relatively uncommon. Traditionally, population trend data for the Nationally Endangered New Zealand grasshopper Brachaspis robustus has been determined by counting all adults and nymphs seen on a single ~1.5 km transect searched once annually. This method lacks spatial and temporal replication, both of which are essential to overcome detection errors in highly cryptic species like B. robustus. It also provides no information about changes in the grasshopper's distribution throughout its range. Here, we design and test new population density and site occupancy monitoring protocols by comparing a) comprehensive plot and transect searches at one site and b) transect searches at two sites representing two different habitats (gravel road and natural riverbed) occupied by the species across its remaining range. Using power analyses, we determined a) the number of transects, b) the number of repeated visits and c) the grasshopper demographic to count to accurately detect long term change in relative population density. To inform a monitoring protocol design to track trends in grasshopper distribution, we estimated the probability of detecting an individual with respect to a) search area, b) weather and c) the grasshopper demographic counted at each of the two sites. Density estimates from plots and transects did not differ significantly. Population density monitoring was found to be most informative when large adult females present in early summer were used to index population size. To detect a significant change in relative density with power > 0.8 at the gravel road habitat, at least seventeen spatial replicates (transects) and four temporal replicates (visits) were required. Density estimates at the natural braided river site performed poorly and likely require a much higher survey effort. Detection of grasshopper presence was highest (pg > 0.6) using a 100 m x 1 m transect at both sites in February under optimal (no cloud) conditions. At least three visits to a transect should be conducted per season for distribution monitoring. Monitoring protocols that inform the management of threatened species are crucial for better understanding and mitigation of the current global trends of insect decline. This study provides an exemplar of how appropriate monitoring protocols can be developed for threatened insect species.


Assuntos
Espécies em Perigo de Extinção , Monitoramento Ambiental/métodos , Voo Animal/fisiologia , Gafanhotos/crescimento & desenvolvimento , Animais , Feminino , Geografia , Nova Zelândia , Dinâmica Populacional , Probabilidade , Especificidade da Espécie
13.
Evol Appl ; 13(5): 991-1008, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32431748

RESUMO

Conservation management strategies for many highly threatened species include conservation breeding to prevent extinction and enhance recovery. Pairing decisions for these conservation breeding programmes can be informed by pedigree data to minimize relatedness between individuals in an effort to avoid inbreeding, maximize diversity and maintain evolutionary potential. However, conservation breeding programmes struggle to use this approach when pedigrees are shallow or incomplete. While genetic data (i.e., microsatellites) can be used to estimate relatedness to inform pairing decisions, emerging evidence indicates this approach may lack precision in genetically depauperate species, and more effective estimates will likely be obtained from genomic data (i.e., thousands of genome-wide single nucleotide polymorphisms, or SNPs). Here, we compare relatedness estimates and subsequent pairing decisions using pedigrees, microsatellites and SNPs from whole-genome resequencing approaches in two critically endangered birds endemic to New Zealand: kaki/black stilt (Himantopus novaezelandiae) and kakariki karaka/orange-fronted parakeet (Cyanoramphus malherbi). Our findings indicate that SNPs provide more precise estimates of relatedness than microsatellites when assessing empirical parent-offspring and full sibling relationships. Further, our results show that relatedness estimates and subsequent pairing recommendations using PMx are most similar between pedigree- and SNP-based approaches. These combined results indicate that in lieu of robust pedigrees, SNPs are an effective tool for informing pairing decisions, which has important implications for many poorly pedigreed conservation breeding programmes worldwide.

14.
Genes (Basel) ; 10(1)2018 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-30583569

RESUMO

Threatened species recovery programmes benefit from incorporating genomic data into conservation management strategies to enhance species recovery. However, a lack of readily available genomic resources, including conspecific reference genomes, often limits the inclusion of genomic data. Here, we investigate the utility of closely related high-quality reference genomes for single nucleotide polymorphism (SNP) discovery using the critically endangered kaki/black stilt (Himantopus novaezelandiae) and four Charadriiform reference genomes as proof of concept. We compare diversity estimates (i.e., nucleotide diversity, individual heterozygosity, and relatedness) based on kaki SNPs discovered from genotyping-by-sequencing and whole genome resequencing reads mapped to conordinal (killdeer, Charadrius vociferus), confamilial (pied avocet, Recurvirostra avosetta), congeneric (pied stilt, Himantopus himantopus) and conspecific reference genomes. Results indicate that diversity estimates calculated from SNPs discovered using closely related reference genomes correlate significantly with estimates calculated from SNPs discovered using a conspecific genome. Congeneric and confamilial references provide higher correlations and more similar measures of nucleotide diversity, individual heterozygosity, and relatedness. While conspecific genomes may be necessary to address other questions in conservation, SNP discovery using high-quality reference genomes of closely related species is a cost-effective approach for estimating diversity measures in threatened species.

15.
Elife ; 62017 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-29084621

RESUMO

In many species, males can make rapid adjustments to ejaculate performance in response to sperm competition risk; however, the mechanisms behind these changes are not understood. Here, we manipulate male social status in an externally fertilising fish, chinook salmon (Oncorhynchus tshawytscha), and find that in less than 48 hr, males can upregulate sperm velocity when faced with an increased risk of sperm competition. Using a series of in vitro sperm manipulation and competition experiments, we show that rapid changes in sperm velocity are mediated by seminal fluid and the effect of seminal fluid on sperm velocity directly impacts paternity share and therefore reproductive success. These combined findings, completely consistent with sperm competition theory, provide unequivocal evidence that sperm competition risk drives plastic adjustment of ejaculate quality, that seminal fluid harbours the mechanism for the rapid adjustment of sperm velocity and that fitness benefits accrue to males from such adjustment.


Assuntos
Adaptação Fisiológica , Salmão/fisiologia , Sêmen/citologia , Comportamento Sexual Animal , Comportamento Social , Motilidade dos Espermatozoides , Animais , Masculino , Fatores de Tempo
16.
Nat Ecol Evol ; 1(4): 53, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28812662

RESUMO

There is contentious debate surrounding the merits of de-extinction as a biodiversity conservation tool. Here, we use extant analogues to predict conservation actions for potential de-extinction candidate species from New Zealand and the Australian state of New South Wales, and use a prioritization protocol to predict the impacts of reintroducing and maintaining populations of these species on conservation of extant threatened species. Even using the optimistic assumptions that resurrection of species is externally sponsored, and that actions for resurrected species can share costs with extant analogue species, public funding for conservation of resurrected species would lead to fewer extant species that could be conserved, suggesting net biodiversity loss. If full costs of establishment and maintenance for resurrected species populations were publicly funded, there could be substantial sacrifices in extant species conservation. If conservation of resurrected species populations could be fully externally sponsored, there could be benefits to extant threatened species. However, such benefits would be outweighed by opportunity costs, assuming such discretionary money could directly fund conservation of extant species. Potential sacrifices in conservation of extant species should be a crucial consideration in deciding whether to invest in de-extinction or focus our efforts on extant species.

17.
Mol Ecol ; 25(21): 5267-5281, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27641156

RESUMO

Several reviews in the past decade have heralded the benefits of embracing high-throughput sequencing technologies to inform conservation policy and the management of threatened species, but few have offered practical advice on how to expedite the transition from conservation genetics to conservation genomics. Here, we argue that an effective and efficient way to navigate this transition is to capitalize on emerging synergies between conservation genetics and primary industry (e.g., agriculture, fisheries, forestry and horticulture). Here, we demonstrate how building strong relationships between conservation geneticists and primary industry scientists is leading to mutually-beneficial outcomes for both disciplines. Based on our collective experience as collaborative New Zealand-based scientists, we also provide insight for forging these cross-sector relationships.


Assuntos
Conservação dos Recursos Naturais , Genômica , Comunicação Interdisciplinar , Agricultura , Pesqueiros , Agricultura Florestal , Colaboração Intersetorial , Nova Zelândia
18.
PLoS One ; 10(3): e0121797, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25822729

RESUMO

Here we present the results of a large-scale bioinformatics annotation of non-coding RNA loci in 48 avian genomes. Our approach uses probabilistic models of hand-curated families from the Rfam database to infer conserved RNA families within each avian genome. We supplement these annotations with predictions from the tRNA annotation tool, tRNAscan-SE and microRNAs from miRBase. We identify 34 lncRNA-associated loci that are conserved between birds and mammals and validate 12 of these in chicken. We report several intriguing cases where a reported mammalian lncRNA, but not its function, is conserved. We also demonstrate extensive conservation of classical ncRNAs (e.g., tRNAs) and more recently discovered ncRNAs (e.g., snoRNAs and miRNAs) in birds. Furthermore, we describe numerous "losses" of several RNA families, and attribute these to either genuine loss, divergence or missing data. In particular, we show that many of these losses are due to the challenges associated with assembling avian microchromosomes. These combined results illustrate the utility of applying homology-based methods for annotating novel vertebrate genomes.


Assuntos
Aves/genética , RNA não Traduzido/genética , Animais , Galinhas/genética , Biologia Computacional , Sequência Conservada , Dosagem de Genes , Variação Genética , Genoma , Humanos , Mamíferos/genética , MicroRNAs/genética , Anotação de Sequência Molecular , Família Multigênica , Pseudogenes , RNA Nucleolar Pequeno/genética , Elementos Reguladores de Transcrição , Especificidade da Espécie
19.
PLoS One ; 7(9): e45170, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22984627

RESUMO

One of the most common questions asked before starting a new population genetic study using microsatellite allele frequencies is "how many individuals do I need to sample from each population?" This question has previously been answered by addressing how many individuals are needed to detect all of the alleles present in a population (i.e. rarefaction based analyses). However, we argue that obtaining accurate allele frequencies and accurate estimates of diversity are much more important than detecting all of the alleles, given that very rare alleles (i.e. new mutations) are not very informative for assessing genetic diversity within a population or genetic structure among populations. Here we present a comparison of allele frequencies, expected heterozygosities and genetic distances between real and simulated populations by randomly subsampling 5-100 individuals from four empirical microsatellite genotype datasets (Formica lugubris, Sciurus vulgaris, Thalassarche melanophris, and Himantopus novaezelandia) to create 100 replicate datasets at each sample size. Despite differences in taxon (two birds, one mammal, one insect), population size, number of loci and polymorphism across loci, the degree of differences between simulated and empirical dataset allele frequencies, expected heterozygosities and pairwise F(ST) values were almost identical among the four datasets at each sample size. Variability in allele frequency and expected heterozygosity among replicates decreased with increasing sample size, but these decreases were minimal above sample sizes of 25 to 30. Therefore, there appears to be little benefit in sampling more than 25 to 30 individuals per population for population genetic studies based on microsatellite allele frequencies.


Assuntos
Frequência do Gene , Variação Genética , Repetições de Microssatélites/genética , Alelos , Animais , Formigas/genética , Aves/genética , Charadriiformes/genética , Bases de Dados Genéticas , Genética Populacional/métodos , Genótipo , Desequilíbrio de Ligação , Tamanho da Amostra , Sciuridae/genética , Especificidade da Espécie
20.
Arch Virol ; 157(9): 1651-63, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22638639

RESUMO

Beak and feather disease virus (BFDV) infections are often fatal to both captive and wild parrot populations. Its recent discovery in a wild population of native red-fronted parakeets has raised concerns for the conservation of native parrots, all of which are threatened or endangered. The question of a recent introduction versus a native genotype of the virus poses different conservation-management challenges, and thus, a clear understanding of the molecular phylogeny of BDFV is a crucial step towards integrated management planning. This study represents the first comprehensive attempt to screen New Zealand's endangered and threatened psittacines systematically for BFDV. We sampled and screened kakapos (Strigops habroptilus), kakas (Nestor meridionalis), keas (N. notabilis), Chatham parakeets (Cyanoramphus forbesi), Malherbe's parakeets (Cyanoramphus malherbi), yellow-crowned parakeets (C. auriceps) and red-fronted parakeets (Cyanoramphus novaezelandiae), as well as eastern rosellas (Platycercus eximius), an introduced species that is now common throughout the North Island, for BFDV. Out of all species and populations sampled (786 individuals), we found 16 BFDV-positive red-fronted parakeets from Little Barrier Island/Hauturu, seven eastern rosellas from the Auckland region, and eight yellow-crowned parakeets from the Eglinton Valley in the South Island. The full genomes of the viral isolates from the red-fronted parakeets share 95-97 % sequence identity to those from the invasive eastern rosellas and 92.7-93.4 % to those isolates from the South Island yellow-crowned parakeets. The yellow-crowned parakeet BFDV isolates share 92-94 % sequence identity with those from eastern rosellas. The low level of diversity among all BFDV isolates from red-fronted parakeets could suggest a more recent infection among these birds compared to the yellow-crowned parakeets, whereas the diversity in the eastern rosellas indicates a much more established infection. Pro-active screening and monitoring of BFDV infection rates in aviaries as well as in wild populations are necessary to limit the risk of transmission among threatened and endangered parrot populations in New Zealand.


Assuntos
Doenças das Aves/epidemiologia , Doenças das Aves/virologia , Infecções por Circoviridae/veterinária , Circovirus/classificação , Circovirus/genética , Animais , Infecções por Circoviridae/epidemiologia , Infecções por Circoviridae/virologia , Circovirus/isolamento & purificação , Análise por Conglomerados , DNA Viral/química , DNA Viral/genética , Variação Genética , Genoma Viral , Dados de Sequência Molecular , Nova Zelândia/epidemiologia , Papagaios , Filogenia , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...