Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 2220, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-37072400

RESUMO

Mother plants play an important role in the control of dormancy and dispersal characters of their progeny. In Arabidopsis seed dormancy is imposed by the embryo-surrounding tissues of the endosperm and seed coat. Here we show that VERNALIZATION5/VIN3-LIKE 3 (VEL3) maintains maternal control over progeny seed dormancy by establishing an epigenetic state in the central cell that primes the depth of primary seed dormancy later established during seed maturation. VEL3 colocalises with MSI1 in the nucleolus and associates with a histone deacetylase complex. Furthermore, VEL3 preferentially associates with pericentromeric chromatin and is required for deacetylation and H3K27me3 deposition established in the central cell. The epigenetic state established by maternal VEL3 is retained in mature seeds, and controls seed dormancy in part through repression of programmed cell death-associated gene ORE1. Our data demonstrates a mechanism by which maternal control of progeny seed physiology persists post-shedding, maintaining parental control of seed behaviour.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Ligação a DNA/genética , Epigênese Genética , Regulação da Expressão Gênica de Plantas , Germinação/genética , Histona Desacetilases/genética , Dormência de Plantas/genética , Sementes/genética , Fatores de Transcrição/genética
2.
Elife ; 102021 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-34792466

RESUMO

Agricultural soil harbors a diverse microbiome that can form beneficial relationships with plants, including the inhibition of plant pathogens. Pseudomonas spp. are one of the most abundant bacterial genera in the soil and rhizosphere and play important roles in promoting plant health. However, the genetic determinants of this beneficial activity are only partially understood. Here, we genetically and phenotypically characterize the Pseudomonas fluorescens population in a commercial potato field, where we identify strong correlations between specialized metabolite biosynthesis and antagonism of the potato pathogens Streptomyces scabies and Phytophthora infestans. Genetic and chemical analyses identified hydrogen cyanide and cyclic lipopeptides as key specialized metabolites associated with S. scabies inhibition, which was supported by in planta biocontrol experiments. We show that a single potato field contains a hugely diverse and dynamic population of Pseudomonas bacteria, whose capacity to produce specialized metabolites is shaped both by plant colonization and defined environmental inputs.


Potato scab and blight are two major diseases which can cause heavy crop losses. They are caused, respectively, by the bacterium Streptomyces scabies and an oomycete (a fungus-like organism) known as Phytophthora infestans. Fighting these disease-causing microorganisms can involve crop management techniques ­ for example, ensuring that a field is well irrigated helps to keep S. scabies at bay. Harnessing biological control agents can also offer ways to control disease while respecting the environment. Biocontrol bacteria, such as Pseudomonas, can produce compounds that keep S. scabies and P. infestans in check. However, the identity of these molecules and how irrigation can influence Pseudomonas population remains unknown. To examine these questions, Pacheco-Moreno et al. sampled and isolated hundreds of Pseudomonas strains from a commercial potato field, closely examining the genomes of 69 of these. Comparing the genetic information of strains based on whether they could control the growth of S. scabies revealed that compounds known as cyclic lipopeptides are key to controlling the growth of S. scabies and P. infestans. Whether the field was irrigated also had a large impact on the strains forming the Pseudomonas population. Working out how Pseudomonas bacteria block disease could speed up the search for biological control agents. The approach developed by Pacheco-Moreno et al. could help to predict which strains might be most effective based on their genetic features. Similar experiments could also work for other combinations of plants and diseases.


Assuntos
Phytophthora infestans/fisiologia , Doenças das Plantas/microbiologia , Pseudomonas fluorescens/genética , Solanum tuberosum/microbiologia , Streptomyces/fisiologia , Cianeto de Hidrogênio/metabolismo , Lipopeptídeos/metabolismo , Peptídeos Cíclicos/metabolismo , Pseudomonas fluorescens/metabolismo
3.
BMC Plant Biol ; 17(1): 232, 2017 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-29202692

RESUMO

BACKGROUND: Nonhost resistance (NHR) protects plants against a vast number of non-adapted pathogens which implicates a potential exploitation as source for novel disease resistance strategies. Aiming at a fundamental understanding of NHR a global analysis of transcriptome reprogramming in the economically important Triticeae cereals wheat and barley, comparing host and nonhost interactions in three major fungal pathosystems responsible for powdery mildew (Blumeria graminis ff. ssp.), cereal blast (Magnaporthe sp.) and leaf rust (Puccinia sp.) diseases, was performed. RESULTS: In each pathosystem a significant transcriptome reprogramming by adapted- or non-adapted pathogen isolates was observed, with considerable overlap between Blumeria, Magnaporthe and Puccinia. Small subsets of these general pathogen-regulated genes were identified as differentially regulated between host and corresponding nonhost interactions, indicating a fine-tuning of the general pathogen response during the course of co-evolution. Additionally, the host- or nonhost-related responses were rather specific for each pair of adapted and non-adapted isolates, indicating that the nonhost resistance-related responses were to a great extent pathosystem-specific. This pathosystem-specific reprogramming may reflect different resistance mechanisms operating against non-adapted pathogens with different lifestyles, or equally, different co-option of the hosts by the adapted isolates to create an optimal environment for infection. To compare the transcriptional reprogramming between wheat and barley, putative orthologues were identified. Within the wheat and barley general pathogen-regulated genes, temporal expression profiles of orthologues looked similar, indicating conserved general responses in Triticeae against fungal attack. However, the comparison of orthologues differentially expressed between host and nonhost interactions revealed fewer commonalities between wheat and barley, but rather suggested different host or nonhost responses in the two cereal species. CONCLUSIONS: Taken together, our results suggest independent co-evolutionary forces acting on host pathosystems mirrored by barley- or wheat-specific nonhost responses. As a result of evolutionary processes, at least for the pathosystems investigated, NHR appears to rely on rather specific plant responses.


Assuntos
Resistência à Doença/genética , Hordeum/imunologia , Doenças das Plantas/imunologia , Triticum/imunologia , Adaptação Fisiológica , Ascomicetos , Evolução Biológica , Resistência à Doença/imunologia , Hordeum/genética , Hordeum/microbiologia , Magnaporthe , Doenças das Plantas/genética , Transcriptoma , Triticum/genética , Triticum/microbiologia
4.
Front Plant Sci ; 7: 1836, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28018377

RESUMO

Pattern recognition receptors (PRRs) belonging to the multigene family of receptor-like kinases (RLKs) are the sensing devices of plants for microbe- or pathogen-associated molecular patterns released from microbial organisms. Here we describe Rnr8 (for Required for non-host resistance 8) encoding HvLEMK1, a LRR-malectin domain-containing transmembrane RLK that mediates non-host resistance of barley to the non-adapted wheat powdery mildew fungus Blumeria graminis f.sp. tritici. Transgenic barley lines with silenced HvLEMK1 allow entry and colony growth of the non-adapted pathogen, although sporulation was reduced and final colony size did not reach that of the adapted barley powdery mildew fungus B. graminis f.sp. hordei. Transient expression of the barley or wheat LEMK1 genes enhanced resistance in wheat to the adapted wheat powdery mildew fungus while expression of the same genes did not protect barley from attack by the barley powdery mildew fungus. The results suggest that HvLEMK1 is a factor mediating non-host resistance in barley and quantitative host resistance in wheat to the wheat powdery mildew fungus.

5.
New Phytol ; 206(2): 606-13, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25760815

RESUMO

Perception of pathogen (or microbe)-associated molecular patterns (PAMPs/MAMPs) by pattern recognition receptors (PRRs) is a key component of plant innate immunity. The Arabidopsis PRR EF-Tu receptor (EFR) recognizes the bacterial PAMP elongation factor Tu (EF-Tu) and its derived peptide elf18. Previous work revealed that transgenic expression of AtEFR in Solanaceae confers elf18 responsiveness and broad-spectrum bacterial disease resistance. In this study, we developed a set of bioassays to study the activation of PAMP-triggered immunity (PTI) in wheat. We generated transgenic wheat (Triticum aestivum) plants expressing AtEFR driven by the constitutive rice actin promoter and tested their response to elf18. We show that transgenic expression of AtEFR in wheat confers recognition of elf18, as measured by the induction of immune marker genes and callose deposition. When challenged with the cereal bacterial pathogen Pseudomonas syringae pv. oryzae, transgenic EFR wheat lines had reduced lesion size and bacterial multiplication. These results demonstrate that AtEFR can be transferred successfully from dicot to monocot species, further revealing that immune signalling pathways are conserved across these distant phyla. As novel PRRs are identified, their transfer between plant families represents a useful strategy for enhancing resistance to pathogens in crops.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Resistência à Doença , Fator Tu de Elongação de Peptídeos/metabolismo , Doenças das Plantas/imunologia , Receptores de Reconhecimento de Padrão/metabolismo , Triticum/imunologia , Proteínas de Arabidopsis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bioensaio , Regulação da Expressão Gênica de Plantas , Glucanos/metabolismo , Oryza/genética , Fator Tu de Elongação de Peptídeos/genética , Doenças das Plantas/microbiologia , Plantas Geneticamente Modificadas , Pseudomonas syringae/fisiologia , Receptores de Reconhecimento de Padrão/genética , Transdução de Sinais , Triticum/genética , Triticum/microbiologia
6.
J Plant Physiol ; 168(9): 990-4, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21315476

RESUMO

Barley stripe mosaic virus (BSMV) has emerged as a vector for virus-induced gene silencing (VIGS) in cereals, having been used to study a number of genes involved in resistance in both wheat and barley. However, the effects of the BSMV vector on plant physiology and disease resistance in plants remains unexplored. The BSMV inoculation control vector, BSMV:GFP was shown to cause severe viral symptoms in wheat, displaying chlorosis, leaf curling and growth inhibition typical of the symptoms seen in BSMV-infected barley. These viral symptoms were accompanied by induction of genes implicated in defense against pathogens, namely PR1, PR4, PR5, PR10 and PAL. Subsequent inoculation of BSMV:GFP-infected wheat with a wheat pathotype of Magnaporthe oryzae, the blast pathogen, resulted in decreased susceptibility. Penetration of epidermal cells and subsequent multiple cell colonization by M. oryzae was significantly reduced. This increased restriction of pathogen growth observed for BSMV:GFP infections with and without the viral coat protein gene. However, prior infection with BSMV:GFP had no effect on the development of a compatible isolate of Blumeria graminis f. sp. tritici, the causal agent of powdery mildew.


Assuntos
Ascomicetos/patogenicidade , Inativação Gênica , Magnaporthe/patogenicidade , Vírus do Mosaico/patogenicidade , Doenças das Plantas/genética , Triticum/genética , Ascomicetos/crescimento & desenvolvimento , Proteínas do Capsídeo/genética , Genes de Plantas , Vetores Genéticos , Magnaporthe/crescimento & desenvolvimento , Vírus do Mosaico/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/virologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Triticum/microbiologia , Triticum/virologia
7.
Plant J ; 58(3): 499-510, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19154205

RESUMO

Arabidopsis thaliana is known to produce the phytoalexin camalexin in response to abiotic and biotic stress. Here we studied the mechanisms of tolerance to camalexin in the fungus Botrytis cinerea, a necrotrophic pathogen of A. thaliana. Exposure of B. cinerea to camalexin induces expression of BcatrB, an ABC transporter that functions in the efflux of fungitoxic compounds. B. cinerea inoculated on wild-type A. thaliana plants yields smaller lesions than on camalexin-deficient A. thaliana mutants. A B. cinerea strain lacking functional BcatrB is more sensitive to camalexin in vitro and less virulent on wild-type plants, but is still fully virulent on camalexin-deficient mutants. Pre-treatment of A. thaliana with UV-C leads to increased camalexin accumulation and substantial resistance to B. cinerea. UV-C-induced resistance was not seen in the camalexin-deficient mutants cyp79B2/B3, cyp71A13, pad3 or pad2, and was strongly reduced in ups1. Here we demonstrate that an ABC transporter is a virulence factor that increases tolerance of the pathogen towards a phytoalexin, and the complete restoration of virulence on host plants lacking this phytoalexin.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Arabidopsis/microbiologia , Botrytis/metabolismo , Indóis/metabolismo , Tiazóis/metabolismo , Fatores de Virulência/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/efeitos da radiação , Botrytis/genética , Botrytis/patogenicidade , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Mutação , Doenças das Plantas/microbiologia , RNA Fúngico/metabolismo , RNA de Plantas/metabolismo , Raios Ultravioleta , Fatores de Virulência/genética
8.
Mol Microbiol ; 43(4): 883-94, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11929539

RESUMO

The grapevine (Vitis) secondary metabolite resveratrol is considered a phytoalexin, which protects the plant from Botrytis cinerea infection. Laccase activity displayed by the fungus is assumed to detoxify resveratrol and to facilitate colonization of grape. We initiated a functional molecular genetic analysis of B. cinerea laccases by characterizing laccase genes and evaluating the phenotype of targeted gene replacement mutants. Two different laccase genes from B. cinerea were characterized, Bclcc1 and Bclcc2. Only Bclcc2 was strongly expressed in liquid cultures in the presence of either resveratrol or tannins. This suggested that Bclcc2, but not Bclcc1, plays an active role in the oxidation of both resveratrol and tannins. Gene replacement mutants in the Bclcc1 and Bclcc2 gene were made to perform a functional analysis. Only Bclcc2 replacement mutants were incapable of converting both resveratrol and tannins. When grown on resveratrol, both the wild type and the Bclcc1 replacement mutant showed inhibited growth, whereas Bclcc2 replacement mutants were unaffected. Thus, contrary to the current theory, BcLCC2 does not detoxify resveratrol but, rather, converts it into compounds that are more toxic for the fungus itself. The Bclcc2 gene was expressed during infection of B. cinerea on a resveratrol-producing host plant, but Bclcc2 replacement mutants were as virulent as the wild-type strain on various hosts. The activation of a plant secondary metabolite by a pathogen introduces a new dimension to plant-pathogen interactions and the phytoalexin concept.


Assuntos
Antifúngicos/metabolismo , Botrytis/enzimologia , Oxirredutases/metabolismo , Fenóis/metabolismo , Pró-Fármacos/metabolismo , Estilbenos/metabolismo , Sequência de Aminoácidos , Arachis/microbiologia , Sequência de Bases , Botrytis/efeitos dos fármacos , Botrytis/genética , Botrytis/crescimento & desenvolvimento , DNA Fúngico , Expressão Gênica , Genes Fúngicos , Taninos Hidrolisáveis/metabolismo , Lacase , Dados de Sequência Molecular , Mutagênese , Oxirredutases/genética , Folhas de Planta/microbiologia , Resveratrol , Homologia de Sequência de Aminoácidos , Virulência , Vitis/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...