Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Bot ; 67(4): 1161-78, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26880749

RESUMO

Optimization of root system architecture (RSA) traits is an important objective for modern wheat breeding. Linkage and association mapping for RSA in two recombinant inbred line populations and one association mapping panel of 183 elite durum wheat (Triticum turgidum L. var. durum Desf.) accessions evaluated as seedlings grown on filter paper/polycarbonate screening plates revealed 20 clusters of quantitative trait loci (QTLs) for root length and number, as well as 30 QTLs for root growth angle (RGA). Divergent RGA phenotypes observed by seminal root screening were validated by root phenotyping of field-grown adult plants. QTLs were mapped on a high-density tetraploid consensus map based on transcript-associated Illumina 90K single nucleotide polymorphisms (SNPs) developed for bread and durum wheat, thus allowing for an accurate cross-referencing of RSA QTLs between durum and bread wheat. Among the main QTL clusters for root length and number highlighted in this study, 15 overlapped with QTLs for multiple RSA traits reported in bread wheat, while out of 30 QTLs for RGA, only six showed co-location with previously reported QTLs in wheat. Based on their relative additive effects/significance, allelic distribution in the association mapping panel, and co-location with QTLs for grain weight and grain yield, the RSA QTLs have been prioritized in terms of breeding value. Three major QTL clusters for root length and number (RSA_QTL_cluster_5#, RSA_QTL_cluster_6#, and RSA_QTL_cluster_12#) and nine RGA QTL clusters (QRGA.ubo-2A.1, QRGA.ubo-2A.3, QRGA.ubo-2B.2/2B.3, QRGA.ubo-4B.4, QRGA.ubo-6A.1, QRGA.ubo-6A.2, QRGA.ubo-7A.1, QRGA.ubo-7A.2, and QRGA.ubo-7B) appear particularly valuable for further characterization towards a possible implementation of breeding applications in marker-assisted selection and/or cloning of the causal genes underlying the QTLs.


Assuntos
Raízes de Plantas/genética , Locos de Características Quantitativas , Tetraploidia , Triticum/genética , Mapeamento Cromossômico , Cromossomos de Plantas , Estudos de Associação Genética , Ligação Genética , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/crescimento & desenvolvimento , Triticum/anatomia & histologia , Triticum/crescimento & desenvolvimento
2.
Theor Appl Genet ; 123(4): 527-44, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21594676

RESUMO

Soil-borne cereal mosaic (SBCM) is a viral disease, which seriously affects hexaploid as well as tetraploid wheat crops in Europe. In durum wheat (Triticum durum Desf.), the elite germplasm is characterized by a wide range of responses to SBCMV, from susceptibility to almost complete resistance. In this study, the genetic analysis of SBCMV resistance was carried out using a population of 181 durum wheat recombinant inbred lines (RILs) obtained from Meridiano (resistant) × Claudio (moderately susceptible), which were profiled with SSR and DArT markers. The RILs were characterized for SBCMV response in the field under severe and uniform SBCMV infection during 2007 and 2008. A wide range of disease reactions (as estimated by symptom severity and DAS-ELISA) was observed. A large portion of the variability for SBCMV response was explained by a major QTL (QSbm.ubo-2BS) located in the distal telomeric region of chromosome 2BS near the marker triplet Xbarc35-Xwmc661-Xgwm210, with R(2) values ranging from 51.6 to 91.6%. The favorable allele was contributed by Meridiano. Several QTLs with minor effects on SBCMV response were also detected. Consistently with the observed transgressive segregation, the resistance alleles at minor QTLs were contributed by both parents. The presence and effects of QSbm.ubo-2BS were validated through association mapping in a panel of 111 elite durum wheat accessions.


Assuntos
Resistência à Doença , Vírus do Mosaico/patogenicidade , Doenças das Plantas/genética , Locos de Características Quantitativas , Triticum/genética , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Cruzamentos Genéticos , Genes de Plantas , Marcadores Genéticos , Desequilíbrio de Ligação , Fenótipo , Doenças das Plantas/imunologia , Doenças das Plantas/virologia , Imunidade Vegetal , Triticum/imunologia , Triticum/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...