Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-489072

RESUMO

SARS-CoV-2 is a highly contagious respiratory virus and the causative agent for COVID-19. The severity of disease varies from mildly symptomatic to lethal and shows an extraordinary correlation with increasing age, which represents the major risk factor for severe COVID-191. However, the precise pathomechanisms leading to aggravated disease in the elderly are currently unknown. Delayed and insufficient antiviral immune responses early after infection as well as dysregulated and overshooting immunopathological processes late during disease were suggested as possible mechanisms. Here we show that the age-dependent increase of COVID-19 severity is caused by the disruption of a timely and well-coordinated innate and adaptive immune response due to impaired interferon (IFN) responses. To overcome the limitations of mechanistic studies in humans, we generated a mouse model for severe COVID-19 and compared the kinetics of the immune responses in adult and aged mice at different time points after infection. Aggravated disease in aged mice was characterized by a diminished IFN-{gamma} response and excessive virus replication. Accordingly, adult IFN-{gamma} receptor-deficient mice phenocopied the age-related disease severity and supplementation of IFN-{gamma} reversed the increased disease susceptibility of aged mice. Mimicking impaired type I IFN immunity in adult and aged mice, a second major risk factor for severe COVID-192-4, we found that therapeutic treatment with IFN-{lambda} in adult and a combinatorial treatment with IFN-{gamma} and IFN-{lambda} in aged Ifnar1-/-mice was highly efficient in protecting against severe disease. Our findings provide an explanation for the age-dependent disease severity of COVID-19 and clarify the nonredundant antiviral functions of type I, II and III IFNs during SARS-CoV-2 infection in an age-dependent manner. Based on our data, we suggest that highly vulnerable individuals combining both risk factors, advanced age and an impaired type I IFN immunity, may greatly benefit from immunotherapy combining IFN-{gamma} and IFN-{lambda}.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-484379

RESUMO

Understanding the host pathways that define susceptibility to SARS-CoV-2 infection and disease are essential for the design of new therapies. Oxygen levels in the microenvironment define the transcriptional landscape, however the influence of hypoxia on virus replication and disease in animal models is not well understood. In this study, we identify a role for the hypoxic inducible factor (HIF) signalling axis to inhibit SARS-CoV-2 infection, epithelial damage and respiratory symptoms in Syrian hamsters. Pharmacological activation of HIF with the prolyl-hydroxylase inhibitor FG-4592 significantly reduced the levels of infectious virus in the upper and lower respiratory tract. Nasal and lung epithelia showed a reduction in SARS-CoV-2 RNA and nucleocapsid expression in treated animals. Transcriptomic and pathological analysis showed reduced epithelial damage and increased expression of ciliated cells. Our study provides new insights on the intrinsic antiviral properties of the HIF signalling pathway in SARS-CoV-2 replication that may be applicable to other respiratory pathogens and identifies new therapeutic opportunities.

3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-437173

RESUMO

The COVID-19 outbreak driven by SARS-CoV-2 has caused more than 2.5 million deaths globally, with the most severe cases characterized by over-exuberant production of immune-mediators, the nature of which is not fully understood. Interferons of the type I (IFN-I) or type III (IFN-III) families are potent antivirals, but their role in COVID-19 remains debated. Our analysis of gene and protein expression along the respiratory tract shows that IFNs, especially IFN-III, are over-represented in the lower airways of patients with severe COVID-19, while high levels of IFN-III, and to a lesser extent IFN-I, characterize the upper airways of patients with high viral burden but reduced disease risk or severity; also, IFN expression varies with abundance of the cell types that produce them. Our data point to a dynamic process of inter- and intra-family production of IFNs in COVID-19, and suggest that IFNs play opposing roles at distinct anatomical sites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...