Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 22383, 2020 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-33361796

RESUMO

Disruption of blood-brain barrier (BBB) integrity is a feature of various neurological disorders. Here we found that the BBB is differently affected during the preclinical, progression and remission phase of experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). We have identified an upregulation of pro-inflammatory and pro-angiogenic factors in the BBB transcriptome and down-regulation of endothelial tight junction members coinciding with elevated BBB leakage specifically during the progression phase. These changes were antagonized by blocking PDGFRα signaling with the small tyrosine kinase inhibitor imatinib. Moreover, targeting the PDGFRα ligand PDGF-CC using a neutralizing antibody, facilitated recovery of BBB integrity and improvement of EAE symptoms. Intracerebroventricular injection of PDGF-CC induced upregulation, whereas blocking PDGF-CC during EAE led to downregulation of Tnfa and Il1a at the BBB. Our findings suggest that blocking PDGF-CC counteracts fundamental aspects of endothelial cell activation and disruption of the BBB by decreasing Tnfa and Il1a expression. We also demonstrate that both PDGF-CC and its receptor PDGFRα were upregulated in MS lesions indicating that blocking PDGF-CC may be considered a novel treatment for MS.


Assuntos
Anticorpos Neutralizantes/farmacologia , Barreira Hematoencefálica/imunologia , Encefalomielite Autoimune Experimental/imunologia , Linfocinas/antagonistas & inibidores , Esclerose Múltipla/imunologia , Fator de Crescimento Derivado de Plaquetas/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Animais , Barreira Hematoencefálica/patologia , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/imunologia , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/patologia , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Interleucina-1alfa/genética , Interleucina-1alfa/imunologia , Linfocinas/genética , Linfocinas/imunologia , Camundongos , Camundongos Transgênicos , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/genética , Esclerose Múltipla/patologia , Fator de Crescimento Derivado de Plaquetas/genética , Fator de Crescimento Derivado de Plaquetas/imunologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
2.
Int J Artif Organs ; 42(2): 80-87, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30585116

RESUMO

PURPOSE:: Blood vessel reconstruction is an increasing need of patients suffering from cardiovascular diseases. For the development of microvascular prostheses, efficient endothelialization is mandatory to prevent graft occlusion. Here, we assessed the impact of amnion-derived mesenchymal stem/stromal cells (hAMSC), known for their important angiogenic potential, on the integrity and stability of endothelial cells exposed to shear stress in vascular grafts. METHODS:: Human placental endothelial cells (hPEC) were cultured at the inner surface of an expanded polytetrafluoroethylene (ePTFE) graft positioned within a bioreactor and exposed to a minimal shear stress of 0.015 dyne/cm2 or a physiological shear stress of 0.92 dyne/cm2. hAMSC attached to the outer graft surface were able to interact with human placental endothelial cells by paracrine factors. RESULTS:: Microscopical analysis and evaluation of glucose/lactate metabolism evidenced successful cell seeding of the graft: hPEC formed a stable monolayer, hAMSC showed a continuous growth during 72 h incubation. hAMSC improved the viability of hPEC exposed to 0.015 dyne/cm2 as shown by a decreased lactate dehydrogenase release of 13% after 72 h compared to hPEC single culture. The viability-enhancing effect of hAMSC on hPEC was further improved by 13% under physiological shear stress. Angiogenesis array analysis revealed that hPEC exposed to physiological shear stress and hAMSC co-culture reduced the secretion of angiogenin, GRO, MCP-1, and TIMP-2. CONCLUSION:: hAMSC exerted best survival-enhancing effects on hPEC under exposure to physiological shear stress and modulated endothelial function by paracrine factors. Our data support further studies on the development of grafts functionalized with hAMSC-derived secretomes to enable fast clinical application.


Assuntos
Âmnio/citologia , Prótese Vascular , Células Endoteliais/fisiologia , Células-Tronco Mesenquimais/fisiologia , Placenta/citologia , Politetrafluoretileno , Técnicas de Cultura de Células , Feminino , Humanos , Gravidez , Resistência ao Cisalhamento , Estresse Mecânico
3.
Acta Neuropathol ; 134(4): 585-604, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28725968

RESUMO

Treatment of acute ischemic stroke with the thrombolytic tissue plasminogen activator (tPA) can significantly improve neurological outcomes; however, thrombolytic therapy is associated with an increased risk of intra-cerebral hemorrhage (ICH). Previously, we demonstrated that during stroke tPA acting on the parenchymal side of the neurovascular unit (NVU) can increase blood-brain barrier (BBB) permeability and ICH through activation of latent platelet-derived growth factor-CC (PDGF-CC) and signaling by the PDGF receptor-α (PDGFRα). However, in vitro, activation of PDGF-CC by tPA is very inefficient and the mechanism of PDGF-CC activation in the NVU is not known. Here, we show that the integrin Mac-1, expressed on brain microglia/macrophages (denoted microglia throughout), acts together with the endocytic receptor LRP1 in the NVU to promote tPA-mediated activation of PDGF-CC. Mac-1-deficient mice (Mac-1-/-) are protected from tPA-induced BBB permeability but not from permeability induced by intracerebroventricular injection of active PDGF-CC. Immunofluorescence analysis demonstrates that Mac-1, LRP1, and the PDGFRα all localize to the NVU of arterioles, and following middle cerebral artery occlusion (MCAO) Mac-1-/- mice show significantly less PDGFRα phosphorylation, BBB permeability, and infarct volume compared to wild-type mice. Bone-marrow transplantation studies indicate that resident CD11b+ cells, but not bone-marrow-derived leukocytes, mediate the early activation of PDGF-CC by tPA after MCAO. Finally, using a model of thrombotic stroke with late thrombolysis, we show that wild-type mice have an increased incidence of spontaneous ICH following thrombolysis with tPA 5 h after MCAO, whereas Mac-1-/- mice are resistant to the development of ICH even with late tPA treatment. Together, these results indicate that Mac-1 and LRP1 act as co-factors for the activation of PDGF-CC by tPA in the NVU, and suggest a novel mechanism for tightly regulating PDGFRα signaling in the NVU and controlling BBB permeability.


Assuntos
Barreira Hematoencefálica/metabolismo , Isquemia Encefálica/metabolismo , Permeabilidade Capilar/fisiologia , Linfocinas/metabolismo , Microglia/metabolismo , Fator de Crescimento Derivado de Plaquetas/metabolismo , Acidente Vascular Cerebral/metabolismo , Animais , Arteríolas/efeitos dos fármacos , Arteríolas/metabolismo , Arteríolas/patologia , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/patologia , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/patologia , Antígeno CD11b/metabolismo , Permeabilidade Capilar/efeitos dos fármacos , Células Cultivadas , Hemorragia Cerebral/induzido quimicamente , Hemorragia Cerebral/metabolismo , Hemorragia Cerebral/patologia , Modelos Animais de Doenças , Feminino , Fibrinolíticos/efeitos adversos , Fibrinolíticos/farmacologia , Leucócitos/metabolismo , Leucócitos/patologia , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Antígeno de Macrófago 1/genética , Antígeno de Macrófago 1/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/patologia , Receptores de LDL/metabolismo , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/patologia , Ativador de Plasminogênio Tecidual/efeitos adversos , Ativador de Plasminogênio Tecidual/farmacologia , Proteínas Supressoras de Tumor/metabolismo
4.
Front Cell Neurosci ; 9: 456, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26648843

RESUMO

The serine protease tissue-type plasminogen activator (tPA) is used as a thrombolytic agent in the management of ischemic stroke, but concerns for hemorrhagic conversion greatly limits the number of patients that receive this treatment. It has been suggested that the bleeding complications associated with thrombolytic tPA may be due to unanticipated roles of tPA in the brain. Recent work has suggested tPA regulation of neurovascular barrier integrity, mediated via platelet derived growth factor (PDGF)-C/PDGF receptor-α (PDGFRα) signaling, as a possible molecular mechanism affecting the outcome of stroke. To better understand the role of tPA in neurovascular regulation we conducted a detailed analysis of the cerebrovasculature in brains from adult tPA deficient (tPA(-/-) ) mice. Our analysis demonstrates that life-long deficiency of tPA is associated with rearrangements in the cerebrovascular tree, including a reduction in the number of vascular smooth-muscle cell covered, large diameter, vessels and a decrease in vessel-associated PDGFRα expression as compared to wild-type (WT) littermate controls. In addition, we found that ablation of tPA results in an increased number of ERG-positive endothelial cells and increased junctional localization of the tight junction protein ZO1. This is intriguing since ERG is an endothelial transcription factor implicated in regulation of vascular integrity. Based on these results, we propose that the protection of barrier properties seen utilizing these tPA (-/-) mice might be due, at least in part, to these cerebrovascular rearrangements. In addition, we found that tPA (-/-) mice displayed mild cerebral ventricular malformations, a feature previously associated with ablation of PDGF-C, thereby providing an in vivo link between tPA and PDGF signaling in central nervous system (CNS) development. Taken together, the data presented here will advance our understanding of the role of tPA within the CNS and in regulation of cerebrovascular permeability.

5.
Biomaterials ; 60: 130-40, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25988728

RESUMO

Stem cell therapy has been proved to be an effective approach to ameliorate the heart remodeling post myocardial infarction (MI). However, poor cell engraftment and survival in ischemic myocardium limits the successful use of cellular therapy for treating MI. Here, we sought to transplant adipose derived-mesenchymal stem cells (AD-MSCs) with a hydrogel (NapFF-NO), naphthalene covalently conjugated a short peptide, FFGGG, and ß-galactose caged nitric oxide (NO) donor, which can release NO molecule in response to ß-galactosidase. AD-MSCs, either from transgenic mice that constitutively express GFP and firefly luciferase (Fluc), or express Fluc under the control of VEGFR2 promoter, were co-transplanted with NapFF-NO hydrogel into murine MI models. Improved cell survival and enhanced cardiac function were confirmed by bioluminescence imaging (BLI) and echocardiogram respectively. Moreover, increasing VEGFR2-luc expression was also tracked in real-time in vivo, indicating NapFF-NO hydrogel stimulated VEGF secretion of AD-MSCs. To investigate the therapeutic mechanism of NapFF-NO hydrogel, cell migration assay, paracrine action of AD-MSCs, and histology analysis were carried out. Our results revealed that condition medium from AD-MSCs cultured with NapFF-NO hydrogel could promote endothelial cell migration. Additionally, AD-MSCs showed significant improvement secretion of angiogenic factors VEGF and SDF-1α in the presence of NapFF-NO hydrogel. Finally, postmortem analysis confirmed that transplanted AD-MSCs with NapFF-NO hydrogel could ameliorate heart function by promoting angiogenesis and attenuating ventricular remodeling. In conclusion, NapFF-NO hydrogel can obviously improve therapeutic efficacy of AD-MSCs for MI by increasing cell engraftment and angiogenic paracrine action.


Assuntos
Preparações de Ação Retardada/metabolismo , Hidrogel de Polietilenoglicol-Dimetacrilato/metabolismo , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Infarto do Miocárdio/terapia , Doadores de Óxido Nítrico/administração & dosagem , Tecido Adiposo/citologia , Animais , Células Cultivadas , Preparações de Ação Retardada/química , Galactose/química , Galactose/metabolismo , Coração/efeitos dos fármacos , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Camundongos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/patologia , Miocárdio/patologia , Células NIH 3T3 , Naftalenos/química , Naftalenos/metabolismo , Neovascularização Fisiológica , Doadores de Óxido Nítrico/uso terapêutico , Oligopeptídeos/química , Oligopeptídeos/metabolismo , Imagem Óptica , Remodelação Ventricular , beta-Galactosidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...