Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 295(52): 18379-18389, 2020 12 25.
Artigo em Inglês | MEDLINE | ID: mdl-33122192

RESUMO

The dimeric ectonucleotidase CD73 catalyzes the hydrolysis of AMP at the cell surface to form adenosine, a potent suppressor of the immune response. Blocking CD73 activity in the tumor microenvironment can have a beneficial effect on tumor eradication and is a promising approach for cancer therapy. Biparatopic antibodies binding different regions of CD73 may be a means to antagonize its enzymatic activity. A panel of biparatopic antibodies representing the pairwise combination of 11 parental monoclonal antibodies against CD73 was generated by Fab-arm exchange. Nine variants vastly exceeded the potency of their parental antibodies with ≥90% inhibition of activity and subnanomolar EC50 values. Pairing the Fabs of parents with nonoverlapping epitopes was both sufficient and necessary whereas monovalent antibodies were poor inhibitors. Some parental antibodies yielded potent biparatopics with multiple partners, one of which (TB19) producing the most potent. The structure of the TB19 Fab with CD73 reveals that it blocks alignment of the N- and C-terminal CD73 domains necessary for catalysis. A separate structure of CD73 with a Fab (TB38) which complements TB19 in a particularly potent biparatopic shows its binding to a nonoverlapping site on the CD73 N-terminal domain. Structural modeling demonstrates a TB19/TB38 biparatopic antibody would be unable to bind the CD73 dimer in a bivalent manner, implicating crosslinking of separate CD73 dimers in its mechanism of action. This ability of a biparatopic antibody to both crosslink CD73 dimers and fix them in an inactive conformation thus represents a highly effective mechanism for the inhibition of CD73 activity.


Assuntos
5'-Nucleotidase/química , 5'-Nucleotidase/imunologia , Anticorpos Monoclonais/imunologia , Epitopos/imunologia , Fragmentos Fab das Imunoglobulinas/imunologia , Neoplasias Pulmonares/imunologia , 5'-Nucleotidase/metabolismo , Domínio Catalítico , Proteínas Ligadas por GPI/química , Proteínas Ligadas por GPI/imunologia , Proteínas Ligadas por GPI/metabolismo , Humanos , Conformação Proteica , Células Tumorais Cultivadas
2.
Mol Ther ; 28(2): 664-676, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-31843448

RESUMO

Patients with α-dystroglycanopathies, a subgroup of rare congenital muscular dystrophies, present with a spectrum of clinical manifestations that includes muscular dystrophy as well as CNS and ocular abnormalities. Although patients with α-dystroglycanopathies are genetically heterogeneous, they share a common defect of aberrant post-translational glycosylation modification of the dystroglycan alpha-subunit, which renders it defective in binding to several extracellular ligands such as laminin-211 in skeletal muscles, agrin in neuromuscular junctions, neurexin in the CNS, and pikachurin in the eye, leading to various symptoms. The genetic heterogeneity associated with the development of α-dystroglycanopathies poses significant challenges to developing a generalized treatment to address the spectrum of genetic defects. Here, we propose the development of a bispecific antibody (biAb) that functions as a surrogate molecular linker to reconnect laminin-211 and the dystroglycan beta-subunit to ameliorate sarcolemmal fragility, a primary pathology in patients with α-dystroglycan-related muscular dystrophies. We show that the treatment of LARGEmyd-3J mice, an α-dystroglycanopathy model, with the biAb improved muscle function and protected muscles from exercise-induced damage. These results demonstrate the viability of a biAb that binds to laminin-211 and dystroglycan simultaneously as a potential treatment for patients with α-dystroglycanopathy.


Assuntos
Anticorpos Biespecíficos/farmacologia , Distroglicanas/metabolismo , Laminina/metabolismo , Síndrome de Walker-Warburg/metabolismo , Animais , Anticorpos Biespecíficos/imunologia , Anticorpos Biespecíficos/metabolismo , Modelos Animais de Doenças , Distroglicanas/imunologia , Expressão Gênica , Humanos , Imuno-Histoquímica , Injeções Intramusculares , Laminina/genética , Laminina/imunologia , Camundongos , Camundongos Knockout , Modelos Biológicos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Ligação Proteica/efeitos dos fármacos , Domínios e Motivos de Interação entre Proteínas/genética , Sarcolema/efeitos dos fármacos , Sarcolema/metabolismo , Síndrome de Walker-Warburg/tratamento farmacológico , Síndrome de Walker-Warburg/etiologia
3.
Org Biomol Chem ; 17(35): 8115-8124, 2019 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-31460552

RESUMO

We report a modular approach to synthesize maleimido group containing hydrophilic dolastatin 10 (Dol10) derivatives as drug-linkers for the syntheses of antibody-drug conjugates (ADCs). Discrete polyethylene glycol (PEG) moieties of different chain lengths were introduced as part of the linker to impart hydrophilicity to these drug linkers. The synthesis process involved construction of PEG maleimido derivatives of the tetrapeptide intermediate (N-methylvaline-valine-dolaisoleucine-dolaproine), which were subsequently coupled with dolaphenine to generate the desired drug linkers. The synthetic method reported in this manuscript circumvents the use of highly cytotoxic Dol10 in its native form. By using trastuzumab (Herceptin®) as the antibody we have synthesized Dol10 containing ADCs. The presence of a discrete PEG chain in the drug linkers resulted in ADCs free from aggregation. The effect of PEG chain length on the biological activities of these Dol10 containing ADCs was investigated by in vitro cytotoxicity assays. ADCs containing PEG6 and PEG8 spacers exhibited the highest level of in vitro anti-proliferative activity against HER2-positive (SK-BR-3) human tumor cells. ADCs derived from Herceptin® and PEG8-Dol10, at a dose of 10 mg kg-1, effectively delayed the tumor growth and prolonged the survival time in mice bearing human ovarian SKOV-3 xenografts.


Assuntos
Anticorpos Monoclonais/farmacologia , Antineoplásicos/farmacologia , Depsipeptídeos/farmacologia , Imunoconjugados/efeitos dos fármacos , Animais , Anticorpos Monoclonais/química , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Depsipeptídeos/química , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Camundongos SCID , Conformação Molecular , Células Tumorais Cultivadas
4.
ChemMedChem ; 13(8): 790-794, 2018 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-29517131

RESUMO

A series of novel multivalent drug linkers (MDLs) containing cytotoxic agents were synthesized and conjugated to antibodies to yield highly potent antibody-drug conjugates (ADCs) with drug/antibody ratios (DARs) higher than those typically reported in the literature (10 vs. ≈4). These MDLs contain two copies of a cytotoxic agent attached to biocompatible scaffolds composed of a branched peptide core and discrete polyethylene glycol (PEG) chains to enhance solubility and decrease aggregation. These drug linkers produced well-defined ADCs, whose DARs could be accurately determined by LC-MS. Using this approach, ADCs with significantly lower aggregation and higher DAR than those of conventional drug linker design were obtained with highly hydrophobic cytotoxic agents such as monomethyldolastatin 10 (MMAD). The in vitro potencies of the MDL-derived conjugates matched that of ADCs of similar DAR with conventional linkers, and the potency increased proportionally with drug loading. This approach may provide a means to prepare highly potent ADCs from a broader range of drugs, including those with lower cytotoxicity or poor solubility, which otherwise limits their use for antibody-drug conjugates. This may also provide a means to further improve the potency achievable with cytotoxins currently used in ADCs.


Assuntos
Antineoplásicos Imunológicos/química , Imunoconjugados/química , Polietilenoglicóis/química , Trastuzumab/química , Antineoplásicos Imunológicos/farmacologia , Linhagem Celular Tumoral , Desenho de Fármacos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Imunoconjugados/farmacologia , Neoplasias/tratamento farmacológico , Polietilenoglicóis/farmacologia , Agregados Proteicos , Solubilidade , Trastuzumab/farmacologia
5.
Bioconjug Chem ; 25(3): 510-20, 2014 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-24533768

RESUMO

Antibody-drug conjugates (ADCs) have been proven clinically to be more effective anti-cancer agents than native antibodies. However, the classical conjugation chemistries to prepare ADCs by targeting primary amines or hinge disulfides have a number of shortcomings including heterogeneous product profiles and linkage instability. We have developed a novel site-specific conjugation method by targeting the native glycosylation site on antibodies as an approach to address these limitations. The native glycans on Asn-297 of antibodies were enzymatically remodeled in vitro using galactosyl and sialyltransferases to introduce terminal sialic acids. Periodate oxidation of these sialic acids yielded aldehyde groups which were subsequently used to conjugate aminooxy functionalized cytotoxic agents via oxime ligation. The process has been successfully demonstrated with three antibodies including trastuzumab and two cytotoxic agents. Hydrophobic interaction chromatography and LC-MS analyses revealed the incorporation of ~1.6 cytotoxic agents per antibody molecule, approximating the number of sialic acid residues. These glyco-conjugated ADCs exhibited target-dependent antiproliferative activity toward antigen-positive tumor cells and significantly greater antitumor efficacy than naked antibody in a Her2-positive tumor xenograft model. These findings suggest that enzymatic remodeling combined with oxime ligation of the native glycans of antibodies offers an attractive approach to generate ADCs with well-defined product profiles. The site-specific conjugation approach presented here provides a viable alternative to other methods, which involve a need to either re-engineer the antibody sequence or develop a highly controlled chemical process to ensure reproducible drug loading.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos/química , Antineoplásicos/farmacologia , Neoplasias Experimentais/tratamento farmacológico , Animais , Anticorpos Monoclonais Humanizados/química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Glicosilação , Humanos , Camundongos , Camundongos SCID , Estrutura Molecular , Neoplasias Experimentais/patologia , Polissacarídeos/química , Ácidos Siálicos/química , Ácidos Siálicos/metabolismo , Sialiltransferases/química , Sialiltransferases/metabolismo , Relação Estrutura-Atividade , Trastuzumab
6.
Methods Mol Biol ; 1045: 145-71, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23913146

RESUMO

Currently, the principal chemistries for the preparation of antibody-drug conjugates (ADC) target either lysines or cysteines for coupling cytotoxic drugs for delivery to target cells expressing tumor-specific antigens. All of these chemistries generate populations of molecules which differ in critical properties which are known to affect efficacy, pharmacokinetics, and the therapeutic window. Of key interest are methods to minimize this heterogeneity to achieve reproducible product profiles and efficacy. A current trend in the development of ADC is the evaluation of suitable targets, antibodies, and payloads, occurring well before process development to produce conjugates of clinical quality. This creates a need for an ability to generate comparably high-quality products early in development and at sufficient scale for evaluating in vitro potency and in vivo efficacy, as well as the early identification of any deficiencies in critical quality attributes including solubility and stability. Here we elaborate detailed protocols using maleimide-based chemistry for the conjugation to reduce hinge disulfides in antibodies by several cytotoxic drugs. We present a method for the initial characterization of the reduction/alkylation reaction using polyethylene-glycol (PEG) as a drug surrogate, a 5 mg scale drug conjugation to provide material for initial characterization including cell proliferation assays and a 150 mg scale process for performing efficacy studies in small animals. These methods yield well-defined predictable product profiles at high yield and with low impurities. These procedures include details relevant to the execution of these methods in a safe and contained manner within a typical laboratory environment.


Assuntos
Antineoplásicos/química , Imunoconjugados/química , Maleimidas/química , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Compostos de Sulfidrila/química , Antineoplásicos/uso terapêutico , Imunoconjugados/uso terapêutico , Fosfinas/química , Projetos Piloto , Polietilenoglicóis/química , Substâncias Redutoras/química
7.
Endocrinology ; 154(3): 1373-83, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23389953

RESUMO

Thyrogen (thyrotropin alfa for injection), recombinant human TSH (rhTSH), has been successfully used to enhance diagnostic radioiodine scanning and thyroglobulin testing in the follow-up of patients with thyroid cancer and as an adjunctive treatment for radioiodine thyroid remnant ablation. However, the short half-life of rhTSH in the circulation requires a multidose regimen. We developed novel sialic acid-mediated and galactose-mediated conjugation chemistries for targeting polyethylene glycol (PEG) to the three N-linked glycosylation sites on the protein, to prolong plasma half-life by eliminating kidney filtration and potential carbohydrate-mediated clearance. Conjugates of different PEG sizes and copy numbers were screened for reaction yield, TSH receptor binding, and murine phamacokinetics/pharmacodynamics studies. The best performing of these products, a 40-kDa mono-PEGylated sialic acid-mediated conjugate, exhibited a 3.5-fold longer duration of action than rhTSH in rats, as a 5-fold lower affinity was more than compensated by a 23-fold extension of circulation half-life. Biochemical characterization confirmed conjugation through the sialic acids. Correlation of PEG distribution on the three N-linked glycosylation sites and the PEG effect on receptor binding supported the previously reported structure-function relationship of rhTSH glycosylation. This long-acting rhTSH has the potential to significantly improve patient convenience and provider flexibility while reducing potential side effects associated with a sudden elevation of serum TSH.


Assuntos
Tireotropina/química , Tireotropina/farmacologia , Animais , Carboidratos/química , Feminino , Glicosilação , Meia-Vida , Humanos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Modelos Moleculares , Polietilenoglicóis/química , Ratos , Ratos Sprague-Dawley , Receptores da Tireotropina/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacocinética , Proteínas Recombinantes/farmacologia , Ácidos Siálicos/química , Tireotropina/análogos & derivados , Tireotropina/farmacocinética
8.
Bioconjug Chem ; 23(12): 2354-64, 2012 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-23176598

RESUMO

Vascular endothelial growth factor (VEGF) neutralizing antagonists including antibodies or receptor extracellular domain Fc fusions have been applied clinically to control angiogenesis in cancer, wet age-related macular degeneration, and edema. We report here the generation of high-affinity VEGF-binding domains by chemical linkage of the second domain of the VEGF receptor Flt-1 (D2) in several configurations. Recombinant D2 was expressed with a 13 a.a. C-terminal tag, including a C-terminal cysteine to enable its dimerization by disulfide bond formation or by attachment to divalent PEGs and oligomerization by coupling to multivalent PEGs. Disulfide-linked dimers produced by Cu(2+) oxidation of the free-thiol form of the protein demonstrated picomolar affinity for VEGF in solution, comparable to that of a D2-Fc fusion (sFLT01) and ~50-fold higher than monomeric D2, suggesting the 26 a.a. tag length between the two D2 domains permits simultaneous interaction of both faces of the VEGF homodimer. Extending the separation between the D2 domains by short PEG spacers from 0.35 kD to 5 kD produced a modest ~2-fold increase in affinity over the disulfide, thus defining the optimal distance between the two D2 domains for maximum affinity. By surface plasmon resonance (SPR), a larger (~5-fold) increase in affinity was observed by conjugation of the D2 monomer to the termini of 4-arm PEG, and yielding a product with a larger hydrodynamic radius than sFLT01. The higher affinity displayed by these D2 PEG tetramers than either D2 dimer or sFLT01 was largely a consequence of a slower rate of dissociation, suggesting the simultaneous binding by these tetramers to neighboring surface-bound VEGF. Finally, disulfide-linked D2 dimers showed a greater resistance to autocatalytic fragmentation than sFLT01 under elevated temperature stress, indicating such minimum-sequence constructs may be better suited for sustained-release formulations. Therefore, these constructs represent novel Fc-independent VEGF antagonists with ultrahigh affinity, high stability, and a range of hydrodynamic radii for application to multiple therapeutic targets.


Assuntos
Polietilenoglicóis/química , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/química , Cobre/química , Cisteína/química , Dimerização , Dissulfetos/química , Células HEK293 , Humanos , Cinética , Terapia de Alvo Molecular , Peso Molecular , Oxirredução , Conformação Proteica , Estabilidade Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Relação Estrutura-Atividade , Ressonância de Plasmônio de Superfície , Fator A de Crescimento do Endotélio Vascular/química , Fator A de Crescimento do Endotélio Vascular/genética , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética
9.
Cancer Chemother Pharmacol ; 70(3): 439-49, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22821053

RESUMO

PURPOSE: Targeting tubulin binders to cancer cells using antibody-drug conjugates (ADCs) has great potential to become an effective cancer treatment with low normal tissue toxicity. The nature of the linker used to tether the tubulin binder to the antibody and the conjugation sites on the antibody and the small molecule are important factors in the ADC stability and effectiveness. METHODS: We explored the use of tubulin-targeting dolastatin 15 derivatives (Dol15) tethered covalently to a representative antibody, trastuzumab, via cleavable and non-cleavable linkers at varying antibody reactive sites (i.e., lysine residues, partially reduced hinge region disulfide bonds) and drug coupling sites (i.e., C-terminus, N-terminus), to investigate which constructs were more effective in killing HER2-positive cells in vitro and in vivo. RESULTS: We found that Dol15 conjugated to trastuzumab via lysine residues at the drug C-terminus using a non-cleavable linker (trastuzumab-amide-C-term-Dol15) produced target-dependent growth inhibition of cells endogenously expressing high HER2 levels (i.e., SK-BR-3, SK-OV-3) in vitro. This ADC was effective at varying doses (i.e., 10 and 20 mg/kg) in the SK-OV-3 human ovarian cancer xenograft. CONCLUSIONS: Tethering Dol15 via partially reduced disulfide bonds at the drug C-terminus via a non-cleavable linker (trastuzumab-MC-C-term-Dol15) resulted in an equally effective ADC in vitro, showing that site of antibody conjugation did not influence ADC activity. However, tethering Dol15 at the drug N-terminus using non-cleavable and cleavable linkers (trastuzumab-MC-N-term-Dol15 and trastuzumab-MC-VC-PABC-N-term-Dol15, respectively) resulted in ineffective ADCs. Thus, Dol15 tethered at the C-terminus may be a useful tubulin-targeting agent for conjugation at various antibody reactive sites.


Assuntos
Anticorpos Monoclonais Humanizados/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Depsipeptídeos/administração & dosagem , Neoplasias Ovarianas/tratamento farmacológico , Receptor ErbB-2/imunologia , Animais , Anticorpos Monoclonais Humanizados/química , Anticorpos Monoclonais Humanizados/farmacologia , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Antineoplásicos/farmacologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Depsipeptídeos/química , Depsipeptídeos/farmacologia , Relação Dose-Resposta a Droga , Sistemas de Liberação de Medicamentos , Feminino , Humanos , Camundongos , Camundongos SCID , Neoplasias Ovarianas/patologia , Trastuzumab , Tubulina (Proteína)/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Bioconjug Chem ; 22(4): 741-51, 2011 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-21417264

RESUMO

Engineering proteins for selective tissue targeting can improve therapeutic efficacy and reduce undesired side effects. The relatively high dose of recombinant human acid α-glucosidase (rhGAA) required for enzyme replacement therapy of Pompe disease may be attributed to less than optimal muscle uptake via the cation-independent mannose 6-phosphate receptor (CI-MPR). To improve muscle targeting, Zhu et al. (1) conjugated periodate oxidized rhGAA with bis mannose 6-phosphate bearing synthetic glycans and achieved 5-fold greater potency in a murine Pompe efficacy model. In the current study, we systematically evaluated multiple strategies for conjugation based on a structural homology model of GAA. Glycan derivatives containing succinimide, hydrazide, and aminooxy linkers targeting free cysteine, lysines, and N-linked glycosylation sites on rhGAA were prepared and evaluated in vitro and in vivo. A novel conjugation method using enzymatic oxidation was developed to eliminate side oxidation of methionine. Conjugates derived from periodate oxidized rhGAA still displayed the greatest potency in the murine Pompe model. The efficiency of conjugation and its effect on catalytic activity were consistent with predictions based on the structural model and supported its use in guiding selection of appropriate chemistries.


Assuntos
Polissacarídeos/química , Proteínas Recombinantes/metabolismo , alfa-Glucosidases/metabolismo , Animais , Biocatálise , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout , Modelos Moleculares , Estrutura Molecular , Ácido N-Acetilneuramínico/química , Oxirredução , Polissacarídeos/administração & dosagem , Polissacarídeos/metabolismo , Engenharia de Proteínas , Proteínas Recombinantes/química , alfa-Glucosidases/administração & dosagem , alfa-Glucosidases/química
11.
J Control Release ; 135(2): 113-8, 2009 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-19146893

RESUMO

Lysosomal storage diseases arise from a genetic loss-of-function defect in enzymes mediating key catabolic steps resulting in accumulation of substrate within the lysosome. Treatment of several of these disorders has been achieved by enzyme replacement therapy (ERT), in which a recombinant version of the defective enzyme is expressed in vitro and administered by infusion. However, in many cases the biodistribution of the administered protein does not match that of the accumulated substrate due to the glycosylation-mediated clearance of the enzymes from circulation, resulting in poor or absent substrate clearance from some tissues. To overcome this limitation, we have evaluated several peptide-based targeting motifs to redirect recombinant human alpha-galactosidase (rhalphaGal) to specific receptors. A reversible thiol-based PEGylation chemistry was developed to achieve multivalent peptide display with lysosomal release. In vitro, cell uptake was peptide dependent and independent of the normal mannose-6-phosphate receptor mediated pathway. Surprisingly, despite increased plasma half-life and decreased liver uptake, none of the peptide conjugates showed significantly altered biodistribution in alphaGal-knockout mice. This suggests that these peptide-based targeting motifs are unlikely to provide substantial therapeutic benefit likely due to the complexity of factors affecting PK and biodistribution.


Assuntos
Lisossomos/metabolismo , Peptídeos/química , Proteínas/metabolismo , alfa-Galactosidase/metabolismo , Motivos de Aminoácidos , Animais , Linhagem Celular Tumoral , Dimerização , Doença de Fabry/terapia , Feminino , Meia-Vida , Humanos , Cinética , Fígado/metabolismo , Masculino , Manose/química , Camundongos , Camundongos Knockout , Oligossacarídeos/química , Polietilenoglicóis/química , Ratos , Receptor IGF Tipo 2/metabolismo , Proteínas Recombinantes/metabolismo , Distribuição Tecidual , alfa-Galactosidase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...