Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 219
Filtrar
1.
Endocrinology ; 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39136248

RESUMO

OBJECTIVE: Housing temperature is a critical regulator of mouse metabolism and thermoneutral housing can improve human translation. However, the impact of housing temperature on the ability of wheel running to rescue the detrimental effect of diet-induced obese mice is currently not fully understood. METHODS: Lean or obese female mice were housed at standard ambient temperature (22℃) or thermoneutrality (30℃) with/without access to running wheels. The metabolic phenotype was investigated using glucose tolerance tests, indirect calorimetry, and body composition. Molecular muscle adaptations were measured using immunoblotting, qPCR, and spectrophotometric/fluorescent assays. RESULTS: Obese female mice housed at 22°C showed lower adiposity, lower circulating insulin levels, improved glucose tolerance, and elevated basal metabolic rate compared to 30°C housing. Mice exposed to voluntary wheel running exhibited a larger fat loss and higher metabolic rate at 22°C housing compared to thermoneutrality. In obese female mice, glucose tolerance improved after exercise training independent of housing temperature. Independent of diet and training, 22°C housing increased skeletal muscle sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA) activity. Additionally, 22°C-housing elevated the induction of training-responsive muscle proteins in obese mice. CONCLUSION: Our findings highlight that housing temperature significantly influences adiposity, insulin sensitivity, muscle physiology, and exercise adaptations in diet-induced obese female mice.

2.
Stress ; 27(1): 2353781, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38823417

RESUMO

Hypothalamic-pituitary-adrenal (HPA)-axis hyperactivity measured by the combined dexamethasone-CRH test (DEX-CRH test) has been found in patients with major depressive disorder (MDD), whereas hypoactivity has been found in patients with work-related stress. We aimed to investigate the DEX-CRH test as a biomarker to distinguish between MDD and work-related stress (exhaustion disorder - ED). We hypothesized that there would be lower cortisol and ACTH response in participants with ED compared to MDD and healthy controls (HC). Also, we explored if the cortisol response of those patients interacted with robust markers of oxidative stress. Thirty inpatients with MDD and 23 outpatients with ED were recruited. Plasma cortisol and ACTH were sampled during a DEX-CRH test. The main outcome measure, area under the curve (AUC) for cortisol and ACTH, was compa-red between MDD vs. ED participants and a historical HC group. Secondary markers of oxidative stress urinary 8-oxodG and 8-oxoGuo; quality of sleep and psychometrics were obtained. Cortisol concentrations were higher in MDD and ED participants compared to HC, and no differences in AUC cortisol and ACTH were found between ED vs. MDD. Compared to ED, MDD participants had higher stress symptom severity and a lower sense of well-being. No differences in oxidative stress markers or quality of sleep between the groups were found. The result indicates that the patients with ED, like patients with MDD, are non-suppressors in DEX-CRH test and not hypocortisolemic as suggested.


Assuntos
Hormônio Adrenocorticotrópico , Biomarcadores , Transtorno Depressivo Maior , Dexametasona , Hidrocortisona , Estresse Oxidativo , Humanos , Transtorno Depressivo Maior/sangue , Transtorno Depressivo Maior/fisiopatologia , Transtorno Depressivo Maior/diagnóstico , Feminino , Masculino , Hidrocortisona/sangue , Adulto , Estresse Oxidativo/fisiologia , Hormônio Adrenocorticotrópico/sangue , Biomarcadores/sangue , Dexametasona/farmacologia , Pessoa de Meia-Idade , Hormônio Liberador da Corticotropina/sangue , Estresse Ocupacional/fisiopatologia , Sistema Hipotálamo-Hipofisário/fisiopatologia , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipófise-Suprarrenal/fisiopatologia
3.
J Hazard Mater ; 471: 134401, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38678714

RESUMO

Tire wear particles (TWP) stand out as a major contributor to microplastic pollution, yet their environmental impact remains inadequately understood. This study delves into the cocktail effects of TWP leachates, employing molecular, cellular, and organismal assessments on diverse biological models. Extracted in artificial seawater and analyzed for metals and organic compounds, TWP leachates revealed the presence of polyaromatic hydrocarbons and 4-tert-octylphenol. Exposure to TWP leachates (1.5 to 1000 mg peq L-1) inhibited algae growth and induced zebrafish embryotoxicity, pigment alterations, and behavioral changes. Cell painting uncovered pro-apoptotic changes, while mechanism-specific gene-reporter assays highlighted endocrine-disrupting potential, particularly antiandrogenic effects. Although heavy metals like zinc have been suggested as major players in TWP leachate toxicity, this study emphasizes water-leachable organic compounds as the primary causative agents of observed acute toxicity. The findings underscore the need to reduce TWP pollution in aquatic systems and enhance regulations governing highly toxic tire additives.


Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Animais , Poluentes Químicos da Água/toxicidade , Microplásticos/toxicidade , Embrião não Mamífero/efeitos dos fármacos , Disruptores Endócrinos/toxicidade , Modelos Biológicos
4.
Diabetes ; 73(2): 162-168, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38241506

RESUMO

Physical activity confers systemic health benefits and provides powerful protection against disease. There has been tremendous interest in understanding the molecular effectors of exercise that mediate these physiologic effects. The modern growth of multiomics technologies-including metabolomics, proteomics, phosphoproteomics, lipidomics, single-cell RNA sequencing, and epigenomics-has provided unparalleled opportunities to systematically investigate the molecular changes associated with physical activity on an organism-wide scale. Here, we discuss how multiomics technologies provide new insights into the systemic effects of physical activity, including the integrative responses across organs as well as the molecules and mechanisms mediating tissue communication during exercise. We also highlight critical unanswered questions that can now be addressed using these high-dimensional tools and provide perspectives on fertile future research directions.


Assuntos
Multiômica , Proteômica , Proteômica/métodos , Metabolômica/métodos , Epigenômica , Exercício Físico
5.
Nat Rev Endocrinol ; 20(3): 127, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38182744
6.
Redox Biol ; 65: 102842, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37572454

RESUMO

The production of reactive oxygen species (ROS) by NADPH oxidase (NOX) 2 has been linked to both insulin resistance and exercise training adaptations in skeletal muscle. This study explores the previously unexamined role of NOX2 in the interplay between diet-induced insulin resistance and exercise training (ET). Using a mouse model that harbors a point mutation in the essential NOX2 regulatory subunit, p47phox (Ncf1*), we investigated the impact of this mutation on various metabolic adaptations. Wild-type (WT) and Ncf1* mice were assigned to three groups: chow diet, 60% energy fat diet (HFD), and HFD with access to running wheels (HFD + E). After a 16-week intervention, a comprehensive phenotypic assessment was performed, including body composition, glucose tolerance, energy intake, muscle insulin signaling, redox-related proteins, and mitochondrial adaptations. The results revealed that NOX2 deficiency exacerbated the impact of HFD on body weight, body composition, and glucose intolerance. Moreover, in Ncf1* mice, ET did not improve glucose tolerance or increase muscle cross-sectional area. ET normalized body fat independently of genotype. The lack of NOX2 activity during ET reduced several metabolic adaptations in skeletal muscle, including insulin signaling and expression of Hexokinase II and oxidative phosphorylation complexes. In conclusion, these findings suggest that NOX2 mediates key beneficial effects of exercise training in the context of diet-induced obesity.


Assuntos
Resistência à Insulina , Animais , Camundongos , Resistência à Insulina/fisiologia , Dieta Hiperlipídica/efeitos adversos , Obesidade/genética , Obesidade/metabolismo , Músculo Esquelético/metabolismo , Insulina/metabolismo , Glucose/metabolismo , Camundongos Endogâmicos C57BL
7.
Sci Adv ; 9(32): eadf7119, 2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37556547

RESUMO

Obesity and type 2 diabetes (T2D) are growing health challenges with unmet treatment needs. Traf2- and NCK-interacting protein kinase (TNIK) is a recently identified obesity- and T2D-associated gene with unknown functions. We show that TNIK governs lipid and glucose homeostasis in Drosophila and mice. Loss of the Drosophila ortholog of TNIK, misshapen, altered the metabolite profiles and impaired de novo lipogenesis in high sugar-fed larvae. Tnik knockout mice exhibited hyperlocomotor activity and were protected against diet-induced fat expansion, insulin resistance, and hepatic steatosis. The improved lipid profile of Tnik knockout mice was accompanied by enhanced skeletal muscle and adipose tissue insulin-stimulated glucose uptake and glucose and lipid handling. Using the T2D Knowledge Portal and the UK Biobank, we observed associations of TNIK variants with blood glucose, HbA1c, body mass index, body fat percentage, and feeding behavior. These results define an untapped paradigm of TNIK-controlled glucose and lipid metabolism.


Assuntos
Resistência à Insulina , Metabolismo dos Lipídeos , Obesidade , Proteínas Serina-Treonina Quinases , Animais , Camundongos , Diabetes Mellitus Tipo 2/genética , Glucose/metabolismo , Lipídeos , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/genética , Obesidade/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo
8.
Proc Natl Acad Sci U S A ; 120(27): e2211041120, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37364105

RESUMO

The molecular events governing skeletal muscle glucose uptake have pharmacological potential for managing insulin resistance in conditions such as obesity, diabetes, and cancer. With no current pharmacological treatments to target skeletal muscle insulin sensitivity, there is an unmet need to identify the molecular mechanisms that control insulin sensitivity in skeletal muscle. Here, the Rho guanine dissociation inhibitor α (RhoGDIα) is identified as a point of control in the regulation of insulin sensitivity. In skeletal muscle cells, RhoGDIα interacted with, and thereby inhibited, the Rho GTPase Rac1. In response to insulin, RhoGDIα was phosphorylated at S101 and Rac1 dissociated from RhoGDIα to facilitate skeletal muscle GLUT4 translocation. Accordingly, siRNA-mediated RhoGDIα depletion increased Rac1 activity and elevated GLUT4 translocation. Consistent with RhoGDIα's inhibitory effect, rAAV-mediated RhoGDIα overexpression in mouse muscle decreased insulin-stimulated glucose uptake and was detrimental to whole-body glucose tolerance. Aligning with RhoGDIα's negative role in insulin sensitivity, RhoGDIα protein content was elevated in skeletal muscle from insulin-resistant patients with type 2 diabetes. These data identify RhoGDIα as a clinically relevant controller of skeletal muscle insulin sensitivity and whole-body glucose homeostasis, mechanistically by modulating Rac1 activity.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Inibidor alfa de Dissociação do Nucleotídeo Guanina rho , Animais , Camundongos , Diabetes Mellitus Tipo 2/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Músculo Esquelético/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Inibidor alfa de Dissociação do Nucleotídeo Guanina rho/metabolismo
9.
J Cachexia Sarcopenia Muscle ; 14(4): 1631-1647, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37194385

RESUMO

BACKGROUND: Metabolic dysfunction and cachexia are associated with poor cancer prognosis. With no pharmacological treatments, it is crucial to define the molecular mechanisms causing cancer-induced metabolic dysfunction and cachexia. Adenosine monophosphate-activated protein kinase (AMPK) connects metabolic and muscle mass regulation. As AMPK could be a potential treatment target, it is important to determine the function for AMPK in cancer-associated metabolic dysfunction and cachexia. We therefore established AMPK's roles in cancer-associated metabolic dysfunction, insulin resistance and cachexia. METHODS: In vastus lateralis muscle biopsies from n = 26 patients with non-small cell lung cancer (NSCLC), AMPK signalling and protein content were examined by immunoblotting. To determine the role of muscle AMPK, male mice overexpressing a dominant-negative AMPKα2 (kinase-dead [KiDe]) specifically in striated muscle were inoculated with Lewis lung carcinoma (LLC) cells (wild type [WT]: n = 27, WT + LLC: n = 34, mAMPK-KiDe: n = 23, mAMPK-KiDe + LLC: n = 38). Moreover, male LLC-tumour-bearing mice were treated with (n = 10)/without (n = 9) 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) to activate AMPK for 13 days. Littermate mice were used as controls. Metabolic phenotyping of mice was performed via indirect calorimetry, body composition analyses, glucose and insulin tolerance tests, tissue-specific 2-[3H]deoxy-d-glucose (2-DG) uptake and immunoblotting. RESULTS: Patients with NSCLC presented increased muscle protein content of AMPK subunits α1, α2, ß2, γ1 and γ3 ranging from +27% to +79% compared with control subjects. In patients with NSCLC, AMPK subunit protein content correlated with weight loss (α1, α2, ß2 and γ1), fat-free mass (α1, ß2 and γ1) and fat mass (α1 and γ1). Tumour-bearing mAMPK-KiDe mice presented increased fat loss and glucose and insulin intolerance. LLC in mAMPK-KiDe mice displayed lower insulin-stimulated 2-DG uptake in skeletal muscle (quadriceps: -35%, soleus: -49%, extensor digitorum longus: -48%) and the heart (-29%) than that in non-tumour-bearing mice. In skeletal muscle, mAMPK-KiDe abrogated the tumour-induced increase in insulin-stimulated TBC1D4thr642 phosphorylation. The protein content of TBC1D4 (+26%), pyruvate dehydrogenase (PDH; +94%), PDH kinases (+45% to +100%) and glycogen synthase (+48%) was increased in skeletal muscle of tumour-bearing mice in an AMPK-dependent manner. Lastly, chronic AICAR treatment elevated hexokinase II protein content and normalized phosphorylation of p70S6Kthr389 (mTORC1 substrate) and ACCser212 (AMPK substrate) and rescued cancer-induced insulin intolerance. CONCLUSIONS: Protein contents of AMPK subunits were upregulated in skeletal muscle of patients with NSCLC. AMPK activation seemed protectively inferred by AMPK-deficient mice developing metabolic dysfunction in response to cancer, including AMPK-dependent regulation of multiple proteins crucial for glucose metabolism. These observations highlight the potential for targeting AMPK to counter cancer-associated metabolic dysfunction and possibly cachexia.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Camundongos , Masculino , Animais , Monofosfato de Adenosina/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Carcinoma Pulmonar de Células não Pequenas/complicações , Caquexia/etiologia , Caquexia/metabolismo , Neoplasias Pulmonares/complicações , Glucose/metabolismo , Músculo Esquelético/metabolismo , Insulina/metabolismo
10.
Fish Shellfish Immunol ; 137: 108793, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37146847

RESUMO

Marine environments receive plastic waste, where it suffers a transformation process into smaller particles. Among them, microplastics (MPs; <5 mm) are ingested by aquatic organisms leading to negative effects on animal welfare. The interactions between MPs, contaminants and organisms are poorly understood. To clarify this issue, European seabass (Dicentrarchus labrax L.) were fed with diets supplemented with 0 (control), polyethylene (PE) MPs (100 mg/kg diet), perfluorooctanesulfonic acid (PFOS, 4.83 µg/kg diet) or PFOS adsorbed to MPs (MPs-PFOS; final concentrations of 4.83 µg and 100 mg of PFOS and MP per kg of feed, respectively). Samples of skin mucus, serum, head-kidney (HK), liver, muscle, brain and intestine were obtained. PFOS levels were high in the liver of fish fed with the PFOS-diet, and markedly reduced when adsorbed to MPs. Compared to the control groups, liver EROD activity did not show any significant changes, whereas brain and muscle cholinesterase activities were decreased in all the groups. The histological and morphometrical study on liver and intestine showed significant alterations in fish fed with the experimental diets. At functional level, all the experimental diets affected the humoral (peroxidase, IgM, protease and bactericidal activities) as well as cellular (phagocytosis, respiratory burst and peroxidase) activities of HK leukocytes, being more marked those effects caused by the PFOS diet. Besides, treatments produced inflammation and oxidative stress as evidenced at gene level. Principal component analysis demonstrated that seabass fed with MPs-PFOS showed more similar effects to MPs alone than to PFOS. Overall, seabass fed with MPs-PFOS diet showed similar or lower toxicological alterations than those fed with MPs or PFOS alone demonstrating the lack of additive effects or even protection against PFOS toxicity.


Assuntos
Bass , Poluentes Químicos da Água , Animais , Microplásticos/toxicidade , Polietileno , Plásticos , Bass/genética , Peroxidases , Poluentes Químicos da Água/toxicidade
11.
Cell Metab ; 35(7): 1261-1279.e11, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37141889

RESUMO

There is a significant interest in identifying blood-borne factors that mediate tissue crosstalk and function as molecular effectors of physical activity. Although past studies have focused on an individual molecule or cell type, the organism-wide secretome response to physical activity has not been evaluated. Here, we use a cell-type-specific proteomic approach to generate a 21-cell-type, 10-tissue map of exercise training-regulated secretomes in mice. Our dataset identifies >200 exercise training-regulated cell-type-secreted protein pairs, the majority of which have not been previously reported. Pdgfra-cre-labeled secretomes were the most responsive to exercise training. Finally, we show anti-obesity, anti-diabetic, and exercise performance-enhancing activities for proteoforms of intracellular carboxylesterases whose secretion from the liver is induced by exercise training.


Assuntos
Diabetes Mellitus , Secretoma , Camundongos , Animais , Proteômica , Proteínas , Obesidade
12.
Acta Oncol ; 62(4): 364-371, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37042166

RESUMO

BACKGROUND: Insulin resistance is a critical cause of metabolic dysfunctions. Metabolic dysfunction is common in patients with cancer and is associated with higher cancer recurrence rates and reduced overall survival. Yet, insulin resistance is rarely considered in the clinic and thus it is uncertain how frequently this condition occurs in patients with cancer. METHODS: To address this knowledge gap, we performed a systematic review and a meta-analysis guided by the Preferred Items for Systematic Review and Meta-Analyses (PRISMA) statement. We included studies assessing insulin resistance in patients with various cancer diagnoses, using the gold-standard hyperinsulinemic-euglycemic clamp method. Studies eligible for inclusion were as follows: (1) included cancer patients older than 18 years of age; (2) included an age-matched control group consisting of individuals without cancer or other types of neoplasms; (3) measured insulin sensitivity using the hyperinsulinemic-euglycemic clamp method. We searched the databases MEDLINE, Embase, and Cochrane Central Register of Controlled Trials for articles published from database inception through March 2023 with no language restriction, supplemented by backward and forward citation searching. Bias was assessed using funnel plot. FINDINGS: Fifteen studies satisfied the criteria. The mean insulin-stimulated rate of glucose disposal (Rd) was 7.5 mg/kg/min in control subjects (n = 154), and 4.7 mg/kg/min in patients with a cancer diagnosis (n = 187). Thus, the Rd mean difference was -2.61 mg/kg/min [95% confidence interval, -3.04; -2.19], p<.01). Heterogeneity among the included studies was insignificant (p=.24). INTERPRETATION: These findings suggest that patients with a cancer diagnosis are markedly insulin resistant. As metabolic dysfunction in patients with cancer associates with increased recurrence and reduced overall survival, future studies should address if ameliorating insulin resistance in this population can improve these outcomes thereby improving patient care.Key pointsMetabolic dysfunction increases cancer recurrence rates and reduces survival for patients with cancer.Insulin resistance is a critical cause of metabolic dysfunctions.To date, no comprehensive compilation of research investigating insulin resistance in cancer patients has been produced.In this meta-analysis, we found that patients with various cancers were markedly insulin-resistant.


Assuntos
Resistência à Insulina , Insulinas , Neoplasias , Humanos
13.
Elife ; 122023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-37073948

RESUMO

Microtubules serve as tracks for long-range intracellular trafficking of glucose transporter 4 (GLUT4), but the role of this process in skeletal muscle and insulin resistance is unclear. Here, we used fixed and live-cell imaging to study microtubule-based GLUT4 trafficking in human and mouse muscle fibers and L6 rat muscle cells. We found GLUT4 localized on the microtubules in mouse and human muscle fibers. Pharmacological microtubule disruption using Nocodazole (Noco) prevented long-range GLUT4 trafficking and depleted GLUT4-enriched structures at microtubule nucleation sites in a fully reversible manner. Using a perifused muscle-on-a-chip system to enable real-time glucose uptake measurements in isolated mouse skeletal muscle fibers, we observed that Noco maximally disrupted the microtubule network after 5 min without affecting insulin-stimulated glucose uptake. In contrast, a 2-hr Noco treatment markedly decreased insulin responsiveness of glucose uptake. Insulin resistance in mouse muscle fibers induced either in vitro by C2 ceramides or in vivo by diet-induced obesity, impaired microtubule-based GLUT4 trafficking. Transient knockdown of the microtubule motor protein kinesin-1 protein KIF5B in L6 muscle cells reduced insulin-stimulated GLUT4 translocation while pharmacological kinesin-1 inhibition in incubated mouse muscles strongly impaired insulin-stimulated glucose uptake. Thus, in adult skeletal muscle fibers, the microtubule network is essential for intramyocellular GLUT4 movement, likely functioning to maintain an insulin-responsive cell surface recruitable GLUT4 pool via kinesin-1-mediated trafficking.


Assuntos
Resistência à Insulina , Insulina , Adulto , Animais , Humanos , Camundongos , Ratos , Glucose/metabolismo , Insulina/metabolismo , Cinesinas/metabolismo , Microtúbulos/metabolismo , Proteínas de Transporte de Monossacarídeos/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Transporte Proteico , Transportador de Glucose Tipo 4
14.
Environ Int ; 172: 107776, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36731188

RESUMO

Epigenetic pathways are essential in different biological processes and in phenotype-environment interactions in response to different stressors and they can induce phenotypic plasticity. They encompass several processes that are mitotically and, in some cases, meiotically heritable, so they can be transferred to subsequent generations via the germline. Transgenerational Epigenetic Inheritance (TEI) describes the phenomenon that phenotypic traits, such as changes in fertility, metabolic function, or behavior, induced by environmental factors (e.g., parental care, pathogens, pollutants, climate change), can be transferred to offspring generations via epigenetic mechanisms. Investigations on TEI contribute to deciphering the role of epigenetic mechanisms in adaptation, adversity, and evolution. However, molecular mechanisms underlying the transmission of epigenetic changes between generations, and the downstream chain of events leading to persistent phenotypic changes, remain unclear. Therefore, inter-, (transmission of information between parental and offspring generation via direct exposure) and transgenerational (transmission of information through several generations with disappearance of the triggering factor) consequences of epigenetic modifications remain major issues in the field of modern biology. In this article, we review and describe the major gaps and issues still encountered in the TEI field: the general challenges faced in epigenetic research; deciphering the key epigenetic mechanisms in inheritance processes; identifying the relevant drivers for TEI and implement a collaborative and multi-disciplinary approach to study TEI. Finally, we provide suggestions on how to overcome these challenges and ultimately be able to identify the specific contribution of epigenetics in transgenerational inheritance and use the correct tools for environmental science investigation and biomarkers identification.


Assuntos
Epigênese Genética , Células Germinativas , Células Germinativas/metabolismo , Fenótipo , Adaptação Fisiológica , Padrões de Herança , Metilação de DNA
15.
Aquat Toxicol ; 248: 106175, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35523058

RESUMO

Risk assessment of chemicals is still primarily focusing on single compound evaluation, even if environmental contamination consists of a mixture of pollutants. The concentration addition (CA) and independent action (IA) models have been developed to predict mixture toxicity. Both models assume no interaction between the components, resulting in an additive mixture effect. In the present study, the embryo toxicity test (OECD TG no. 236) with zebrafish embryos (Danio rerio) was performed to investigate whether the toxicity caused by binary, ternary, and quaternary mixtures of organic (Benzo[a]pyrene, perfluorooctanesulfonate, and 3,3´,4,4´,5-pentachlorobiphenyl 126) and inorganic (arsenate) pollutants can be predicted by CA and IA. The acute toxicity and sub-lethal alterations such as lack of blood circulation were investigated. The models estimated the mixture toxicity well and most of the mixtures were additive. However, the binary mixture of PFOS and PCB126 caused a synergistic effect, with almost a ten-fold difference between the observed and predicted LC50-value. For most of the mixtures, the CA model was better in predicting the mixture toxicity than the IA model, which was not expected due to the chemicals' different modes of action. In addition, some of the mixtures caused sub-lethal effects not observed in the single compound toxicity tests. The mixture of PFOS and BaP caused a division of the yolk and imbalance was caused by the combination of PFOS and As and the ternary mixture of PFOS, As, and BaP. Interestingly, PFOS was part of all three mixtures causing the mixture specific sub-lethal effects. In conclusion, the present study shows that CA and IA are mostly resulting in good estimations of the risks that mixtures with few components are posing. However, for a more reliable assessment and a better understanding of mixture toxicity, further investigations are required to study the underlying mechanisms.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Animais , Poluentes Ambientais/toxicidade , Dose Letal Mediana , Testes de Toxicidade , Poluentes Químicos da Água/toxicidade , Peixe-Zebra
16.
FASEB J ; 36(3): e22211, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35195922

RESUMO

Metabolic dysfunction and insulin resistance are emerging as hallmarks of cancer and cachexia, and impair cancer prognosis. Yet, the molecular mechanisms underlying impaired metabolic regulation are not fully understood. To elucidate the mechanisms behind cancer-induced insulin resistance in muscle, we isolated extensor digitorum longus (EDL) and soleus muscles from Lewis Lung Carcinoma tumor-bearing mice. Three weeks after tumor inoculation, muscles were isolated and stimulated with or without a submaximal dose of insulin (1.5 nM). Glucose transport was measured using 2-[3 H]Deoxy-Glucose and intramyocellular signaling was investigated using immunoblotting. In soleus muscles from tumor-bearing mice, insulin-stimulated glucose transport was abrogated concomitantly with abolished insulin-induced TBC1D4 and GSK3 phosphorylation. In EDL, glucose transport and TBC1D4 phosphorylation were not impaired in muscles from tumor-bearing mice, while AMPK signaling was elevated. Anabolic insulin signaling via phosphorylation of the mTORC1 targets, p70S6K thr389, and ribosomal-S6 ser235, were decreased by cancer in soleus muscle while increased or unaffected in EDL. In contrast, the mTOR substrate, pULK1 ser757, was reduced in both soleus and EDL by cancer. Hence, cancer causes considerable changes in skeletal muscle insulin signaling that is dependent on muscle-type, which could contribute to metabolic dysregulation in cancer. Thus, the skeletal muscle could be a target for managing metabolic dysfunction in cancer.


Assuntos
Carcinoma Pulmonar de Lewis/metabolismo , Glucose/metabolismo , Secreção de Insulina , Músculo Esquelético/metabolismo , Transdução de Sinais , Quinases Proteína-Quinases Ativadas por AMP/metabolismo , Animais , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Transporte Biológico , Linhagem Celular Tumoral , Feminino , Proteínas Ativadoras de GTPase/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Serina-Treonina Quinases TOR/metabolismo
17.
IEEE Trans Biomed Eng ; 69(2): 758-770, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34398748

RESUMO

OBJECTIVE: The goal of this work was to develop a novel modular focused ultrasound hyperthermia (FUS-HT) system for preclinical applications with the following characteristics: MR-compatible, compact probe for integration into a PET/MR small animal scanner, 3D-beam steering capabilities, high resolution focusing for generation of spatially confined FUS-HT effects. METHODS: For 3D-beam steering capabilities, a matrix array approach with 11 × 11 elements was chosen. For reaching the required level of integration, the array was mounted with a conductive backing directly on the interconnection PCB. The array is driven by a modified version of our 128 channel ultrasound research platform DiPhAS. The system was characterized using sound field measurements and validated using tissue-mimicking phantoms. Preliminary MR-compatibility tests were performed using a 7T Bruker MRI scanner. RESULTS: Four 11 × 11 arrays between 0.5 and 2 MHz were developed and characterized with respect to sound field properties and HT generation. Focus sizes between 1 and 4 mm were reached depending on depth and frequency. We showed heating by 4 °C within 60 s in phantoms. The integration concept allows a probe thickness of less than 12 mm. CONCLUSION: We demonstrated FUS-HT capabilities of our modular system based on matrix arrays and a 128 channel electronics system within a 3D-steering range of up to ±30°. The suitability for integration into a small animal MR could be demonstrated in basic MR-compatibility tests. SIGNIFICANCE: The developed system presents a new generation of FUS-HT for preclinical and translational work providing safe, reversible, localized, and controlled HT.


Assuntos
Hipertermia Induzida , Animais , Hipertermia Induzida/métodos , Imageamento por Ressonância Magnética/veterinária , Imagens de Fantasmas , Ultrassonografia/veterinária
18.
Am J Physiol Endocrinol Metab ; 322(1): E63-E73, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34866401

RESUMO

In mice, exercise is suggested to activate the mechanistic target of rapamycin complex 2 (mTORC2) in skeletal muscle, and mTORC2 is required for normal muscle glucose uptake during exercise. Whether this translates to human skeletal muscle and what signaling pathways facilitate the exercise-induced mTORC2 activation is unknown. We herein tested the hypothesis that exercise increases mTORC2 activity in human skeletal muscle and investigated if ß2-adrenergic receptor (AR) activation mediates exercise-induced mTORC2 activation. We examined several mTORC2 activity readouts (p-NDRG1 Thr346, p-Akt Ser473, p-mTOR S2481, and p-Akt Thr450) in human skeletal muscle biopsies after uphill walking or cycling exercise. In mouse muscles, we assessed mTORC2 activity readouts following acute activation of muscle ß2-adrenergic or GS signaling and during in vivo and ex vivo muscle contractions. Exercise increased phosphorylation of NDRG1 Thr346 in human soleus, gastrocnemius, and vastus lateralis muscle, without changing p-Akt Ser473, p-Akt Thr450, and p-mTOR Ser2481. In mouse muscle, stimulation of ß2-adrenergic or GS signaling and ex vivo contractions failed to increase p-NDRG1 Thr346, whereas in vivo contractions were sufficient to induce p-NDRG1 Thr346. In conclusion, the mTORC2 activity readout p-NDRG1 Thr346 is a novel exercise-responsive signaling protein in human skeletal muscle. Notably, contraction-induced p-NDRG1 Thr346 appears to require a systemic factor. Unlike exercise, and in contrast to published data obtained in cultured muscles cells, stimulation of ß2-adrenergic signaling is not sufficient to trigger NDRG1 phosphorylation in mature mouse skeletal muscle.NEW & NOTEWORTHY The mTORC2 readout p-NDRG Thr346 is a novel exercise-responsive protein in human skeletal muscle. ß2-AR and GS signaling are not sufficient to induce mTORC2 signaling in adult muscle. In vivo, but not ex vivo, contraction induced p-NDRG Thr346, which indicates requirement of a systemic factor for exercise-induced mTORC2 activation.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Músculo Esquelético/metabolismo , Transdução de Sinais/fisiologia , Caminhada/fisiologia , Adulto , Animais , Células Cultivadas , Feminino , Fibroblastos/metabolismo , Voluntários Saudáveis , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Contração Muscular/fisiologia , Fosforilação/fisiologia , Receptores Adrenérgicos beta 2/metabolismo , Adulto Jovem
19.
Environ Sci Pollut Res Int ; 29(3): 4497-4507, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34409531

RESUMO

The sorption processes of persistent organic pollutants on microplastics particles are poorly understood. Therefore, the present study investigated the sorption processes of perfluorooctanesulfonate (PFOS) on polyethylene (PE) microplastic particles (MPs) which are representing a prominent environmental pollutant and one of the most abundant microplastic polymers in the aquatic environment, respectively. The focus was set on the investigation of the impact of the particle size on PFOS sorption using four different PE MPs size ranges. The sorption kinetics for 6 months was studied with one selected size range of PE MPs. Besides, the desorption of PFOS from PE MPs under simulated digestive conditions was carried out by using artificial gut fluid mimicking the intestinal juice of fish. The investigation of the size effects of particles over 6 months demonstrated a linear increase of PFOS concentration sorbed onto PE with a decrease of the particle size. Thus, our findings implicate efficient sorption of PFOS onto PE MPs of different sizes. The results showed that PFOS desorbed from the PE MPs into the artificial gut fluid with a rate of 70 to 80%. Besides, a longer exposure of PE MPs to PFOS leads to a higher concentration adsorbed by PE MPs, which may favor the ingestion of higher concentration of PFOS, and thus represents a higher risk to transfer relevant concentrations of PFOS during digestion.


Assuntos
Microplásticos , Poluentes Químicos da Água , Adsorção , Ácidos Alcanossulfônicos , Animais , Fluorocarbonos , Cinética , Plásticos , Polietileno , Poluentes Químicos da Água/análise
20.
Int J Mol Sci ; 22(7)2021 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-33801684

RESUMO

Metabolic dysfunction is a comorbidity of many types of cancers. Disruption of glucose metabolism is of concern, as it is associated with higher cancer recurrence rates and reduced survival. Current evidence suggests many health benefits from exercise during and after cancer treatment, yet only a limited number of studies have addressed the effect of exercise on cancer-associated disruption of metabolism. In this review, we draw on studies in cells, rodents, and humans to describe the metabolic dysfunctions observed in cancer and the tissues involved. We discuss how the known effects of acute exercise and exercise training observed in healthy subjects could have a positive outcome on mechanisms in people with cancer, namely: insulin resistance, hyperlipidemia, mitochondrial dysfunction, inflammation, and cachexia. Finally, we compile the current limited knowledge of how exercise corrects metabolic control in cancer and identify unanswered questions for future research.


Assuntos
Terapia por Exercício/métodos , Regulação Neoplásica da Expressão Gênica , Neoplasias/metabolismo , Neoplasias/terapia , Tecido Adiposo/metabolismo , Animais , Caquexia/metabolismo , Exercício Físico/fisiologia , Humanos , Hiperlipidemias/metabolismo , Inflamação , Resistência à Insulina , Doenças Metabólicas/metabolismo , Camundongos , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Neoplasias/fisiopatologia , Ratos , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA