Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Comput Chem ; 37(23): 2146-56, 2016 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-27371816

RESUMO

The prediction of substance-related charge-transport properties is important for the tayloring of new materials for organic devices, such as organic solar cells. Assuming a hopping process, the Marcus theory is frequently used to model charge transport. Here another approach, which is already widely used for exciton transport, is adapted to charge transport. It is based on the spectral overlap of the vibrational donor and acceptor spectra. As the Marcus theory it is derived from Fermi's Golden rule, however, it contains less approximations, as the molecular vibrations are treated quantum mechanically. In contrast, the Marcus theory reduces all vibrational degrees of freedom to one and treats its influence classically. The approach is tested on different acenes and predicts most of the experimentally available hole mobilities in these materials within a factor of 2. This represents a significant improvement to values obtained from Marcus theory which is qualitatively correct but frequently overestimates the mobilities by factors up to 10. Furthermore, the charge-transport properties of two derivatives of perylene bisimide are investigated. © 2016 Wiley Periodicals, Inc.

2.
J Am Chem Soc ; 136(26): 9327-37, 2014 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-24909402

RESUMO

The exciton diffusion length (LD) is a key parameter for the efficiency of organic optoelectronic devices. Its limitation to the nm length scale causes the need of complex bulk-heterojunction solar cells incorporating difficulties in long-term stability and reproducibility. A comprehensive model providing an atomistic understanding of processes that limit exciton trasport is therefore highly desirable and will be proposed here for perylene-based materials. Our model is based on simulations with a hybrid approach which combines high-level ab initio computations for the part of the system directly involved in the described processes with a force field to include environmental effects. The adequacy of the model is shown by detailed comparison with available experimental results. The model indicates that the short exciton diffusion lengths of α-perylene tetracarboxylicdianhydride (PTCDA) are due to ultrafast relaxation processes of the optical excitation via intermolecular motions leading to a state from which further exciton diffusion is hampered. As the efficiency of this mechanism depends strongly on molecular arrangement and environment, the model explains the strong dependence of LD on the morphology of the materials, for example, the differences between α-PTCDA and diindenoperylene. Our findings indicate how relaxation processes can be diminished in perylene-based materials. This model can be generalized to other organic compounds.

3.
J Chem Theory Comput ; 10(3): 1242-55, 2014 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-26580193

RESUMO

Exciton diffusion is a critical step for energy conversion in optoelectronic devices. This spawns the desire for theoretical approaches that allow for fast but reliable determinations of the material-dependent exciton transport parameters. For this purpose, the Marcus theory, which is widely used in the context of charge transport, is adapted to exciton diffusion. In contrast to the common approach of calculating the exciton hopping rate via the coupling and the spectral overlap, this alternative approach is less costly, because, instead of the spectral overlap, only the reorganization energy is needed. To demonstrate the capability of the approach, the diffusion constants for naphthalene, anthracene, and diindenoperylene crystals are calculated and compared with both calculations conducted with the well-established exciton hopping rate, including coupling and spectral overlap, and with experimental data. These test calculations show that Marcus-based exciton diffusion properties tend to be too small but are qualitatively correct (i.e., they seem to be useful to predict trends). Nevertheless, for reliable results, high-level quantum chemical approaches are necessary for the computation of the reorganization energies. However, they have to be calculated only once. Coupling constants, which are needed for all pairs of monomers, have a considerably smaller influence, i.e., they can be computed by a lower level approach, which makes the method even less costly.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA