Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38328157

RESUMO

Large library docking can reveal unexpected chemotypes that complement the structures of biological targets. Seeking new agonists for the cannabinoid-1 receptor (CB1R), we docked 74 million tangible molecules, prioritizing 46 high ranking ones for de novo synthesis and testing. Nine were active by radioligand competition, a 20% hit-rate. Structure-based optimization of one of the most potent of these (Ki = 0.7 uM) led to '4042, a 1.9 nM ligand and a full CB1R agonist. A cryo-EM structure of the purified enantiomer of '4042 ('1350) in complex with CB1R-Gi1 confirmed its docked pose. The new agonist was strongly analgesic, with generally a 5-10-fold therapeutic window over sedation and catalepsy and no observable conditioned place preference. These findings suggest that new cannabinoid chemotypes may disentangle characteristic cannabinoid side-effects from their analgesia, supporting the further development of cannabinoids as pain therapeutics.

3.
Nat Protoc ; 16(10): 4799-4832, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34561691

RESUMO

Structure-based docking screens of large compound libraries have become common in early drug and probe discovery. As computer efficiency has improved and compound libraries have grown, the ability to screen hundreds of millions, and even billions, of compounds has become feasible for modest-sized computer clusters. This allows the rapid and cost-effective exploration and categorization of vast chemical space into a subset enriched with potential hits for a given target. To accomplish this goal at speed, approximations are used that result in undersampling of possible configurations and inaccurate predictions of absolute binding energies. Accordingly, it is important to establish controls, as are common in other fields, to enhance the likelihood of success in spite of these challenges. Here we outline best practices and control docking calculations that help evaluate docking parameters for a given target prior to undertaking a large-scale prospective screen, with exemplification in one particular target, the melatonin receptor, where following this procedure led to direct docking hits with activities in the subnanomolar range. Additional controls are suggested to ensure specific activity for experimentally validated hit compounds. These guidelines should be useful regardless of the docking software used. Docking software described in the outlined protocol (DOCK3.7) is made freely available for academic research to explore new hits for a range of targets.


Assuntos
Desenho de Fármacos , Simulação de Acoplamento Molecular , Ligantes , Software
4.
J Chem Inf Model ; 61(2): 699-714, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33494610

RESUMO

Enrichment of ligands versus property-matched decoys is widely used to test and optimize docking library screens. However, the unconstrained optimization of enrichment alone can mislead, leading to false confidence in prospective performance. This can arise by over-optimizing for enrichment against property-matched decoys, without considering the full spectrum of molecules to be found in a true large library screen. Adding decoys representing charge extrema helps mitigate over-optimizing for electrostatic interactions. Adding decoys that represent the overall characteristics of the library to be docked allows one to sample molecules not represented by ligands and property-matched decoys but that one will encounter in a prospective screen. An optimized version of the DUD-E set (DUDE-Z), as well as Extrema and sets representing broad features of the library (Goldilocks), is developed here. We also explore the variability that one can encounter in enrichment calculations and how that can temper one's confidence in small enrichment differences. The new tools and new decoy sets are freely available at http://tldr.docking.org and http://dudez.docking.org.


Assuntos
Benchmarking , Ligantes , Modelos Moleculares , Estudos Prospectivos , Ligação Proteica
5.
Nature ; 579(7800): 609-614, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32040955

RESUMO

The neuromodulator melatonin synchronizes circadian rhythms and related physiological functions through the actions of two G-protein-coupled receptors: MT1 and MT2. Circadian release of melatonin at night from the pineal gland activates melatonin receptors in the suprachiasmatic nucleus of the hypothalamus, synchronizing the physiology and behaviour of animals to the light-dark cycle1-4. The two receptors are established drug targets for aligning circadian phase to this cycle in disorders of sleep5,6 and depression1-4,7-9. Despite their importance, few in vivo active MT1-selective ligands have been reported2,8,10-12, hampering both the understanding of circadian biology and the development of targeted therapeutics. Here we docked more than 150 million virtual molecules to an MT1 crystal structure, prioritizing structural fit and chemical novelty. Of these compounds, 38 high-ranking molecules were synthesized and tested, revealing ligands with potencies ranging from 470 picomolar to 6 micromolar. Structure-based optimization led to two selective MT1 inverse agonists-which were topologically unrelated to previously explored chemotypes-that acted as inverse agonists in a mouse model of circadian re-entrainment. Notably, we found that these MT1-selective inverse agonists advanced the phase of the mouse circadian clock by 1.3-1.5 h when given at subjective dusk, an agonist-like effect that was eliminated in MT1- but not in MT2-knockout mice. This study illustrates the opportunities for modulating melatonin receptor biology through MT1-selective ligands and for the discovery of previously undescribed, in vivo active chemotypes from structure-based screens of diverse, ultralarge libraries.


Assuntos
Ritmo Circadiano/fisiologia , Ligantes , Receptores de Melatonina/agonistas , Receptores de Melatonina/metabolismo , Animais , Ritmo Circadiano/efeitos dos fármacos , Escuridão , Avaliação Pré-Clínica de Medicamentos , Agonismo Inverso de Drogas , Feminino , Humanos , Luz , Masculino , Camundongos , Camundongos Knockout , Simulação de Acoplamento Molecular , Receptor MT1 de Melatonina/agonistas , Receptor MT1 de Melatonina/deficiência , Receptor MT1 de Melatonina/genética , Receptor MT1 de Melatonina/metabolismo , Receptor MT2 de Melatonina/agonistas , Receptor MT2 de Melatonina/deficiência , Receptor MT2 de Melatonina/genética , Receptor MT2 de Melatonina/metabolismo , Receptores de Melatonina/deficiência , Receptores de Melatonina/genética , Bibliotecas de Moléculas Pequenas/farmacologia , Especificidade por Substrato/genética
6.
Proc Natl Acad Sci U S A ; 114(33): E6839-E6846, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28760952

RESUMO

Binding-site water is often displaced upon ligand recognition, but is commonly neglected in structure-based ligand discovery. Inhomogeneous solvation theory (IST) has become popular for treating this effect, but it has not been tested in controlled experiments at atomic resolution. To do so, we turned to a grid-based version of this method, GIST, readily implemented in molecular docking. Whereas the term only improves docking modestly in retrospective ligand enrichment, it could be added without disrupting performance. We thus turned to prospective docking of large libraries to investigate GIST's impact on ligand discovery, geometry, and water structure in a model cavity site well-suited to exploring these terms. Although top-ranked docked molecules with and without the GIST term often overlapped, many ligands were meaningfully prioritized or deprioritized; some of these were selected for testing. Experimentally, 13/14 molecules prioritized by GIST did bind, whereas none of the molecules that it deprioritized were observed to bind. Nine crystal complexes were determined. In six, the ligand geometry corresponded to that predicted by GIST, for one of these the pose without the GIST term was wrong, and three crystallographic poses differed from both predictions. Notably, in one structure, an ordered water molecule with a high GIST displacement penalty was observed to stay in place. Inclusion of this water-displacement term can substantially improve the hit rates and ligand geometries from docking screens, although the magnitude of its effects can be small and its impact in drug binding sites merits further controlled studies.


Assuntos
Biologia Computacional/métodos , Simulação de Acoplamento Molecular , Soluções/química , Solventes/química , Algoritmos , Sítios de Ligação , Cristalografia por Raios X , Cinética , Ligantes , Estrutura Molecular , Ligação Proteica , Conformação Proteica , Termodinâmica , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...