Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 310
Filtrar
1.
Stroke ; 55(5): 1254-1260, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38567531

RESUMO

BACKGROUND: Moyamoya disease (MMD) is a progressive, occlusive disease of the internal carotid arteries and their proximal branches, with the subsequent development of an abnormal vascular network that is rupture-prone. Steno-occlusive changes in the posterior cerebral arteries (PCAs) may contribute to worsened outcomes in patients with MMD; however, there is little information on the incidence and natural history of posterior circulation MMD (PCMMD). We describe clinical PCMMD characteristics in a large cohort of patients with MMD. METHODS: We retrospectively reviewed patients with MMD treated between 1991 and 2019 at a large academic medical center. Demographics, perioperative outcomes, and radiological phenotypes were recorded for 770 patients. PCA disease was graded as either 0 (no disease), 1 (mild), 2 (moderate), or 3 (severe or occluded) based on cerebral angiography. Patients with angiographically confirmed MMD diagnosis with at least 6 months follow-up and completion of revascularization surgery were included; patients with intracranial atherosclerosis, intracranial dissection, vasculitis, and undefined inflammatory processes were excluded. The presence of stenosis/occlusion was graded radiographically to assess for disease progression and the prevalence of risk factors related to reduced progression-free survival. RESULTS: In all, 686 patients met the inclusion criteria, with PCA disease identified in 282 (41.1%) patients. Of those 282 patients with PCMMD, disease severity ranged from 99 (35.1%) with mild, 72 (25.5%) with moderate, and 111 (39.4%) with severe. The total number of postoperative complications was significantly associated with PCMMD severity (P=0.0067). Additionally, PCMMD severity correlated with worse postoperative modified Rankin Scale scores (P<0.0001). At a mean follow-up of 6.0±3.9 (range, 0.1-25.0) years, a total of 60 (12.6%) patients showed new/worsening PCMMD. The overall postoperative, progression-free survival in patients with PCMMD was 95.4% at 1 year, 82.4% at 3 years, 68.8% at 5 years, and 28.3% at 10 years, with prognostic factors for progression including preoperative PCMMD status, history of tobacco use, and hypertension (P<0.0001, P<0.001, and P<0.0001, respectively). CONCLUSIONS: PCA disease involvement in MMD is associated with higher rates of ischemic perioperative complications and worsened functional outcomes, likely due to reduced collateral flow. Ten-year progression of PCA disease is highly likely and should be monitored throughout follow-up; future studies will assess the impact of PCA disease progression on long-term outcomes.

2.
Transl Stroke Res ; 15(2): 399-408, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-36745304

RESUMO

Moyamoya disease (MMD) is characterized by progressive occlusion of the intracranial internal carotid arteries, leading to ischemic and hemorrhagic events. Significant clinical differences exist between ischemic and hemorrhagic MMD. To understand the molecular profiles in the cerebrospinal fluid (CSF) of MMD patients, we investigated 62 secreted factors in both MMD subtypes (ischemic and hemorrhagic) and examined their relationship with preoperative perfusion status, the extent of postoperative angiographic revascularization, and functional outcomes. Intraoperative CSF was collected from 32 control and 71 MMD patients (37 ischemic and 34 hemorrhagic). Multiplex Luminex assay analysis showed that 41 molecules were significantly elevated in both MMD subtypes when compared to controls, including platelet-derived growth factor-BB (PDGF-BB), plasminogen activator inhibitor 1 (PAI-1), and intercellular adhesion molecule 1 (ICAM1) (p < 0.001). Many of these secreted proteins have not been previously reported in MMD, including interleukins (IL-2, IL-4, IL-5, IL-7, IL-8, IL-9, IL-17, IL-18, IL-22, and IL-23) and C-X-C motif chemokines (CXCL1 and CXCL9). Pathway analysis indicated that both MMD subtypes exhibited similar cellular/molecular functions and pathways, including cellular activation, migration, and inflammatory response. While neuroinflammation and dendritic cell pathways were activated in MMD patients, lipid signaling pathways involving nuclear receptors, peroxisome proliferator-activated receptor (PPAR), and liver X receptors (LXR)/retinoid X receptors (RXR) signaling were inhibited. IL-13 and IL-2 were negatively correlated with preoperative cerebral perfusion status, while 7 factors were positively correlated with the extent of postoperative revascularization. These elevated cytokines, chemokines, and growth factors in CSF may contribute to the pathogenesis of MMD and represent potential future therapeutic targets.


Assuntos
Doença de Moyamoya , Humanos , Doença de Moyamoya/cirurgia , Interleucina-2 , Citocinas , Quimiocinas
4.
J Magn Reson Imaging ; 59(4): 1349-1357, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37515518

RESUMO

BACKGROUND: Cerebrovascular reserve (CVR) reflects the capacity of cerebral blood flow (CBF) to change following a vasodilation challenge. Decreased CVR is associated with a higher stroke risk in patients with cerebrovascular diseases. While revascularization can improve CVR and reduce this risk in adult patients with vasculopathy such as those with Moyamoya disease, its impact on hemodynamics in pediatric patients remains to be elucidated. Arterial spin labeling (ASL) is a quantitative MRI technique that can measure CBF, CVR, and arterial transit time (ATT) non-invasively. PURPOSE: To investigate the short- and long-term changes in hemodynamics after bypass surgeries in patients with Moyamoya disease. STUDY TYPE: Longitudinal. POPULATION: Forty-six patients (11 months-18 years, 28 females) with Moyamoya disease. FIELD STRENGTH/SEQUENCE: 3-T, single- and multi-delay ASL, T1-weighted, T2-FLAIR, 3D MRA. ASSESSMENT: Imaging was performed 2 weeks before and 1 week and 6 months after surgical intervention. Acetazolamide was employed to induce vasodilation during the imaging procedure. CBF and ATT were measured by fitting the ASL data to the general kinetic model. CVR was computed as the percentage change in CBF. The mean CBF, ATT, and CVR values were measured in the regions affected by vasculopathy. STATISTICAL TESTS: Pre- and post-revascularization CVR, CBF, and ATT were compared for different regions of the brain. P-values <0.05 were considered statistically significant. RESULTS: ASL-derived CBF in flow territories affected by vasculopathy significantly increased after bypass by 41 ± 31% within a week. At 6 months, CBF significantly increased by 51 ± 34%, CVR increased by 68 ± 33%, and ATT was significantly reduced by 6.6 ± 2.9%. DATA CONCLUSION: There may be short- and long-term improvement in the hemodynamic parameters of pediatric Moyamoya patients after bypass surgery. EVIDENCE LEVEL: 4 TECHNICAL EFFICACY: Stage 2.


Assuntos
Doença de Moyamoya , Adulto , Feminino , Humanos , Criança , Doença de Moyamoya/diagnóstico por imagem , Doença de Moyamoya/cirurgia , Imageamento por Ressonância Magnética/métodos , Encéfalo , Hemodinâmica , Circulação Cerebrovascular/fisiologia , Marcadores de Spin
5.
Neurocrit Care ; 40(2): 587-602, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37470933

RESUMO

BACKGROUND: Surgical revascularization decreases the long-term risk of stroke in children with moyamoya arteriopathy but can be associated with an increased risk of stroke during the perioperative period. Evidence-based approaches to optimize perioperative management are limited and practice varies widely. Using a modified Delphi process, we sought to establish expert consensus on key components of the perioperative care of children with moyamoya undergoing indirect revascularization surgery and identify areas of equipoise to define future research priorities. METHODS: Thirty neurologists, neurosurgeons, and intensivists practicing in North America with expertise in the management of pediatric moyamoya were invited to participate in a three-round, modified Delphi process consisting of a 138-item practice patterns survey, anonymous electronic evaluation of 88 consensus statements on a 5-point Likert scale, and a virtual group meeting during which statements were discussed, revised, and reassessed. Consensus was defined as ≥ 80% agreement or disagreement. RESULTS: Thirty-nine statements regarding perioperative pediatric moyamoya care for indirect revascularization surgery reached consensus. Salient areas of consensus included the following: (1) children at a high risk for stroke and those with sickle cell disease should be preadmitted prior to indirect revascularization; (2) intravenous isotonic fluids should be administered in all patients for at least 4 h before and 24 h after surgery; (3) aspirin should not be discontinued in the immediate preoperative and postoperative periods; (4) arterial lines for blood pressure monitoring should be continued for at least 24 h after surgery and until active interventions to achieve blood pressure goals are not needed; (5) postoperative care should include hourly vital signs for at least 24 h, hourly neurologic assessments for at least 12 h, adequate pain control, maintaining normoxia and normothermia, and avoiding hypotension; and (6) intravenous fluid bolus administration should be considered the first-line intervention for new focal neurologic deficits following indirect revascularization surgery. CONCLUSIONS: In the absence of data supporting specific care practices before and after indirect revascularization surgery in children with moyamoya, this Delphi process defined areas of consensus among neurosurgeons, neurologists, and intensivists with moyamoya expertise. Research priorities identified include determining the role of continuous electroencephalography in postoperative moyamoya care, optimal perioperative blood pressure and hemoglobin targets, and the role of supplemental oxygen for treatment of suspected postoperative ischemia.


Assuntos
Revascularização Cerebral , Doença de Moyamoya , Acidente Vascular Cerebral , Criança , Humanos , Técnica Delphi , Doença de Moyamoya/cirurgia , Acidente Vascular Cerebral/etiologia , Assistência Perioperatória , Cuidados Pós-Operatórios , Revascularização Cerebral/efeitos adversos , Resultado do Tratamento , Estudos Retrospectivos
6.
Neurosurgery ; 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38095422

RESUMO

The legacy of Stanford University's Department of Neurosurgery began in 1858, with the establishment of a new medical school on the West Coast. Stanford Neurosurgery instilled an atmosphere of dedication to neurosurgical care, scientific research, education, and innovation. We highlight key historical events leading to the formation of the medical school and neurosurgical department, the individuals who shaped the department's vision and expansion, as well as pioneering advances in research and clinical care. The residency program was started in 1961, establishing the basis of the current education model with a strong emphasis on training future leaders, and the Moyamoya Center, founded in 1991, became the largest Moyamoya referral center in the United States. The opening of Stanford Stroke Center (1992) and seminal clinical trials resulted in a significant impact on cerebrovascular disease by expanding the treatment window of IV thrombolysis and intra-arterial thrombectomy. The invention and implementation of CyberKnife® (1994) marks another important event that revolutionized the field of radiosurgery, and the development of Stanford's innovative Brain Computer Interface program is pushing the boundaries of this specialty. The more recent launch of the Neurosurgery Virtual Reality and Simulation Center (2017) exemplifies how Stanford is continuing to evolve in this ever-changing field. The department also became a model for diversity within the school as well as nationwide. The growth of Stanford Neurosurgery from one of the youngest neurosurgery departments in the country to a prominent comprehensive neurosurgery center mirrors the history of neurosurgery itself: young, innovative, and willing to overcome challenges.

9.
Biomaterials ; 302: 122314, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37776766

RESUMO

Atherosclerosis is an inflammatory process resulting in the deposition of cholesterol and cellular debris, narrowing of the vessel lumen and clot formation. Characterization of the morphology and vulnerability of the lesion is essential for effective clinical management. Here, near-infrared auto-photoacoustic (NIRAPA) imaging is shown to detect plaque components and, when combined with ultrasound imaging, to differentiate stable and vulnerable plaque. In an ex vivo study of photoacoustic imaging of excised plaque from 25 patients, 88.2% sensitivity and 71.4% specificity were achieved using a clinically-relevant protocol. In order to determine the origin of the NIRAPA signal, immunohistochemistry, spatial transcriptomics and spatial proteomics were co-registered with imaging and applied to adjacent plaque sections. The highest NIRAPA signal was spatially correlated with bilirubin and associated blood-based residue and with the cytoplasmic contents of inflammatory macrophages bearing CD74, HLA-DR, CD14 and CD163 markers. In summary, we establish the potential to apply the NIRAPA-ultrasound imaging combination to detect vulnerable carotid plaque and a methodology for fusing molecular imaging with spatial transcriptomic and proteomic methods.


Assuntos
Aterosclerose , Técnicas Fotoacústicas , Placa Aterosclerótica , Humanos , Placa Aterosclerótica/diagnóstico por imagem , Placa Aterosclerótica/patologia , Técnicas Fotoacústicas/métodos , Proteômica , Aterosclerose/diagnóstico por imagem , Aterosclerose/patologia , Ultrassonografia
11.
medRxiv ; 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37398016

RESUMO

Atherosclerosis is an inflammatory process resulting in the deposition of cholesterol and cellular debris, narrowing of the vessel lumen and clot formation. Characterization of the morphology and vulnerability of the lesion is essential for effective clinical management. Photoacoustic imaging has sufficient penetration and sensitivity to map and characterize human atherosclerotic plaque. Here, near infrared photoacoustic imaging is shown to detect plaque components and, when combined with ultrasound imaging, to differentiate stable and vulnerable plaque. In an ex vivo study of photoacoustic imaging of excised plaque from 25 patients, 88.2% sensitivity and 71.4% specificity were achieved using a clinically-relevant protocol. In order to determine the origin of the near-infrared auto-photoacoustic (NIRAPA) signal, immunohistochemistry, spatial transcriptomics and proteomics were applied to adjacent sections of the plaque. The highest NIRAPA signal was spatially correlated with bilirubin and associated blood-based residue and inflammatory macrophages bearing CD74, HLA-DR, CD14 and CD163 markers. In summary, we establish the potential to apply the NIRAPA-ultrasound imaging combination to detect vulnerable carotid plaque.

12.
J Neurosurg Case Lessons ; 5(21)2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37218736

RESUMO

BACKGROUND: Schizencephaly is an uncommon central nervous system malformation. Intracranial lipomas are also rare, accounting for approximately 0.1% of brain "tumors." They are believed to be derived from a persistent meninx primitiva, a neural crest-derived mesenchyme that develops into the dura and leptomeninges. OBSERVATIONS: The authors present a case of heterotopic adipose tissue and a nonshunting arterial vascular malformation arising within a schizencephalic cleft in a 22-year-old male. Imaging showed right frontal gray matter abnormality and an associated suspected arteriovenous malformation with evidence of hemorrhage. Brain magnetic resonance imaging revealed right frontal polymicrogyria lining an open-lip schizencephaly, periventricular heterotopic gray matter, fat within the schizencephalic cleft, and gradient echo hypointensity concerning for prior hemorrhage. Histological assessment demonstrated mature adipose tissue with large-bore, thick-walled, irregular arteries. Mural calcifications and subendothelial cushions suggesting nonlaminar blood flow were observed. There were no arterialized veins or direct transitions from the arteries to veins. Hemosiderin deposition was scant, and hemorrhage was not present. The final diagnosis was consistent with ectopic mature adipose tissue and arteries with meningocerebral cicatrix. LESSONS: This example of a complex maldevelopment of derivatives of the meninx primitiva in association with cortical maldevelopment highlights the unique challenges from both a radiological and histological perspective during diagnostic workup.

13.
Interv Neuroradiol ; : 15910199231170411, 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37070145

RESUMO

BACKGROUND: Aneurysmal subarachnoid hemorrhage results in significant mortality and disability, which is worsened by the development of delayed cerebral ischemia. Tests to identify patients with delayed cerebral ischemia prospectively are of high interest. OBJECTIVE: We created a machine learning system based on clinical variables to predict delayed cerebral ischemia in aneurysmal subarachnoid hemorrhage patients. We also determined which variables have the most impact on delayed cerebral ischemia prediction using SHapley Additive exPlanations method. METHODS: 500 aneurysmal subarachnoid hemorrhage patients were identified and 369 met inclusion criteria: 70 patients developed delayed cerebral ischemia (delayed cerebral ischemia+) and 299 did not (delayed cerebral ischemia-). The algorithm was trained based upon age, sex, hypertension (HTN), diabetes, hyperlipidemia, congestive heart failure, coronary artery disease, smoking history, family history of aneurysm, Fisher Grade, Hunt and Hess score, and external ventricular drain placement. Random Forest was selected for this project, and prediction outcome of the algorithm was delayed cerebral ischemia+. SHapley Additive exPlanations was used to visualize each feature's contribution to the model prediction. RESULTS: The Random Forest machine learning algorithm predicted delayed cerebral ischemia: accuracy 80.65% (95% CI: 72.62-88.68), area under the curve 0.780 (95% CI: 0.696-0.864), sensitivity 12.5% (95% CI: -3.7 to 28.7), specificity 94.81% (95% CI: 89.85-99.77), PPV 33.3% (95% CI: -4.39 to 71.05), and NPV 84.1% (95% CI: 76.38-91.82). SHapley Additive exPlanations value demonstrated Age, external ventricular drain placement, Fisher Grade, and Hunt and Hess score, and HTN had the highest predictive values for delayed cerebral ischemia. Lower age, absence of hypertension, higher Hunt and Hess score, higher Fisher Grade, and external ventricular drain placement increased risk of delayed cerebral ischemia. CONCLUSION: Machine learning models based upon clinical variables predict delayed cerebral ischemia with high specificity and good accuracy.

14.
Cell Rep ; 42(4): 112353, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37043353

RESUMO

Stem cell therapy shows promise for multiple disorders; however, the molecular crosstalk between grafted cells and host tissue is largely unknown. Here, we take a step toward addressing this question. Using translating ribosome affinity purification (TRAP) with sequencing tools, we simultaneously decode the transcriptomes of graft and host for human neural stem cells (hNSCs) transplanted into the stroke-injured rat brain. Employing pathway analysis tools, we investigate the interactions between the two transcriptomes to predict molecular pathways linking host and graft genes; as proof of concept, we predict host-secreted factors that signal to the graft and the downstream molecular cascades they trigger in the graft. We identify a potential host-graft crosstalk pathway where BMP6 from the stroke-injured brain induces graft secretion of noggin, a known brain repair factor. Decoding the molecular interplay between graft and host is a critical step toward deciphering the molecular mechanisms of stem cell action.


Assuntos
Células-Tronco Neurais , Acidente Vascular Cerebral , Ratos , Animais , Humanos , Encéfalo , Acidente Vascular Cerebral/terapia , Transplante de Células-Tronco , Diferenciação Celular
16.
J Neurointerv Surg ; 15(12): 1212-1217, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36597947

RESUMO

Delayed cerebral ischemia (DCI) affects 30% of patients following aneurysmal subarachnoid hemorrhage (aSAH) and is a major driver of morbidity, mortality, and intensive care unit length of stay for these patients. DCI is strongly associated with cerebral arterial vasospasm, reduced cerebral blood flow and cerebral infarction. The current standard treatment with intravenous or intra-arterial calcium channel antagonist and balloon angioplasty or stent has limited efficacy. A simple treatment such as a cervical sympathetic block (CSB) may be an effective therapy but is not routinely performed to treat vasospasm/DCI. CSB consists of injecting local anesthetic at the level of the cervical sympathetic trunk, which temporarily blocks the innervation of the cerebral arteries to cause arterial vasodilatation. CSB is a local, minimally invasive, low cost and safe technique that can be performed at the bedside and may offer significant advantages as complementary treatment in combination with more conventional neurointerventional surgery interventions. We reviewed the literature that describes CSB for vasospasm/DCI prevention or treatment in humans after aSAH. The studies outlined in this review show promising results for a CSB as a treatment for vasospasm/DCI. Further research is required to standardize the technique, to explore how to integrate a CSB with conventional neurointerventional surgery treatments of vasospasm and DCI, and to study its long-term effect on neurological outcomes.


Assuntos
Isquemia Encefálica , Hemorragia Subaracnóidea , Vasoespasmo Intracraniano , Humanos , Vasoespasmo Intracraniano/etiologia , Vasoespasmo Intracraniano/terapia , Isquemia Encefálica/terapia , Isquemia Encefálica/complicações , Infarto Cerebral/etiologia , Hemorragia Subaracnóidea/complicações , Hemorragia Subaracnóidea/terapia
17.
Reg Anesth Pain Med ; 48(10): 513-519, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-36424089

RESUMO

BACKGROUND/IMPORTANCE: Delayed cerebral ischemia (DCI) is the second-leading cause of death and disability in patients with aneurysmal subarachnoid hemorrhage (aSAH), and is associated with cerebral arterial vasospasm (CAV). Current treatments for CAV are expensive, invasive, and have limited efficacy. Cervical sympathetic block (CSB) is an underappreciated, but potentially highly effective therapy for CAV. OBJECTIVE: To provide a comprehensive review of the preclinical and human literature pertinent to CSB in the context of CAV. EVIDENCE REVIEW: This study followed Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews guidelines. We conducted a literature search using Embase, PubMed, Cochrane Database of Systematic Reviews, Cochrane Central Register of Controlled Trials, Scopus and Web of Science until February 2022, to identify abstracts, conference proceedings, and full-text papers pertinent to cervical sympathectomy and CAV in animal/adult patients. FINDINGS: We included six human and six experimental studies. Human studies were mostly prospective observational, except one retrospective and one randomized clinical trial, and used various imaging modalities to measure changes in arterial diameter after the block. Studies that used digital subtraction angiography showed an improvement in cerebral perfusion without change in vessel diameter. Transcranial Doppler studies found an approximately 15% statistically significant decrease in velocities consistent with arterial vasodilatation. Overall, the results suggest an increase in cerebral arterial diameter and neurological improvement in patients receiving a CSB. Animal studies demonstrate that sympathetic system ablation vasodilates cerebral vasculature and decreases the incidence of symptomatic vasospasm. CONCLUSIONS: This scoping review suggests that CSB may be a viable option for treatment and prevention of CAV/DCI in patients with aSAH, although the included studies were heterogeneous, mostly observational, and with a small sample size. Further research is needed to standardize the technique and prove its effectiveness to treat patients suffering of CAV/DCI after aSAH.


Assuntos
Isquemia Encefálica , Hemorragia Subaracnóidea , Vasoespasmo Intracraniano , Adulto , Humanos , Estudos Retrospectivos , Vasoespasmo Intracraniano/diagnóstico por imagem , Vasoespasmo Intracraniano/etiologia , Vasoespasmo Intracraniano/prevenção & controle , Hemorragia Subaracnóidea/diagnóstico por imagem , Hemorragia Subaracnóidea/cirurgia , Hemorragia Subaracnóidea/complicações , Isquemia Encefálica/etiologia , Isquemia Encefálica/prevenção & controle , Isquemia Encefálica/epidemiologia , Simpatectomia/efeitos adversos , Estudos Observacionais como Assunto , Ensaios Clínicos Controlados Aleatórios como Assunto
18.
J Neurosurg ; 138(5): 1374-1384, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36272120

RESUMO

OBJECTIVE: The post-bypass stroke risk factors and long-term outcomes of moyamoya patients are not well documented. Therefore, the authors studied 30-day stroke risks and patients' long-term physical, functional, and social well-being. METHODS: This was a single-institution combined moyamoya disease (MMD) database interrogation and questionnaire study. From 1991 to 2014, 1250 revascularization procedures (1118 direct bypasses, 132 indirect bypasses) were performed in 769 patients. Completed questionnaires were received from and available for analysis on 391 patients, and 6-month follow-up data were available for 96.4% (741/769) of the patients. RESULTS: The patients consisted of 548 females and 221 males, with a mean age of 32 years (range 1-69 years). Three hundred fifty-eight bypasses were performed in 205 pediatric patients (73% direct bypasses), and 892 revascularizations were performed in 564 adults (96% direct bypasses). Fifty-two patients (6.8%) developed major strokes with a worsening modified Rankin Scale (mRS) score within 30 days postoperatively. The 30-day major stroke risk was 5.3% (41/769) and 2.6% (12/467) after the first and second bypasses, respectively. Logistic regression analysis revealed that older age, modified MRI (mMRI) score, and hemodynamic reserve (HDR) score are clearly associated with higher postoperative stroke risks. Over a mean follow-up of 7.3 years (range 0.5-26 years), the long-term stroke risk among 741 patients was 0.6% per patient-year; 75% of these patients had excellent outcomes (mRS score 0-1). The long-term outcome questionnaire study showed that 84% (234/277) of patients reported resolution or improvement in their preoperative headache, 83% (325/391) remained employed or in school, and 87% (303/348) were self-caring. CONCLUSIONS: In this large, single-center surgical series, most of the adult and pediatric patients had direct revascularization, with a 4.2% per-bypass-procedure (6.8% per patient) 30-day major stroke risk and a 0.6% per-patient-year long-term stroke risk. The authors identified various risk factors that are highly correlated with postoperative morbidity (age, mMRI score, and HDR score) and are involved in ongoing work to develop the predictive modeling for future patient selection and treatment.


Assuntos
Revascularização Cerebral , Doença de Moyamoya , Acidente Vascular Cerebral , Adulto , Masculino , Feminino , Humanos , Criança , Lactente , Pré-Escolar , Adolescente , Adulto Jovem , Pessoa de Meia-Idade , Idoso , Doença de Moyamoya/cirurgia , Resultado do Tratamento , Estudos Retrospectivos , Revascularização Cerebral/métodos , Acidente Vascular Cerebral/cirurgia
19.
J Cereb Blood Flow Metab ; 43(2_suppl): 138-151, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-36408536

RESUMO

Cerebrovascular reserve (CVR) reflects the capacity of cerebral blood flow (CBF) to change. Decreased CVR implies poor hemodynamics and is linked to a higher risk for stroke. Revascularization has been shown to improve CBF in patients with vasculopathy such as Moyamoya disease. Dynamic susceptibility contrast (DSC) can measure transit time to evaluate patients suspected of stroke. Arterial spin labeling (ASL) is a non-invasive technique for CBF, CVR, and arterial transit time (ATT) measurements. Here, we investigate the change in hemodynamics 4-12 months after extracranial-to-intracranial direct bypass in 52 Moyamoya patients using ASL with single and multiple post-labeling delays (PLD). Images were collected using ASL and DSC with acetazolamide. CVR, CBF, ATT, and time-to-maximum (Tmax) were measured in different flow territories. Results showed that hemodynamics improved significantly in regions affected by arterial occlusions after revascularization. CVR increased by 16 ± 11% (p < 0.01) and 25 ± 13% (p < 0.01) for single- and multi-PLD ASL, respectively. Transit time measured by multi-PLD ASL and post-vasodilation DSC reduced by 13 ± 7% (p < 0.01) and 9 ± 5% (p < 0.01), respectively. For all regions, ATT correlated significantly with Tmax (R2 = 0.59, p < 0.01). Thus, revascularization improved CVR and decreased transit times. Multi-PLD ASL can serve as an effective and non-invasive modality to examine vascular hemodynamics in Moyamoya patients.


Assuntos
Doença de Moyamoya , Acidente Vascular Cerebral , Humanos , Doença de Moyamoya/diagnóstico por imagem , Doença de Moyamoya/cirurgia , Imageamento por Ressonância Magnética/métodos , Artérias , Hemodinâmica , Circulação Cerebrovascular/fisiologia , Marcadores de Spin
20.
Neurosurg Focus Video ; 6(1): V16, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36284597

RESUMO

The surgical treatment of moyamoya disease is heavily reliant upon a real-time understanding of cerebral hemodynamics. The application of FLOW 800 allows the surgeon to semiquantify the degree of perfusion to the cerebral cortex following extracranial-to-intracranial (EC-IC) bypass surgery. The authors present three illustrative cases demonstrating common intraoperative findings prior to and following anastomosis using FLOW 800. All patients were diagnosed by catheter angiogram with moyamoya disease and noninvasive imaging demonstrating hemispheric hypoperfusion. Superficial temporal artery (STA)-to-middle cerebral artery (MCA or M4) bypasses were performed to augment intracranial perfusion. The patients tolerated the procedures well and were discharged without event in stable neurological condition. The video can be found here: https://stream.cadmore.media/r10.3171/2021.10.FOCVID21191.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...