Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Proteomics ; 163: 14-27, 2017 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-28495501

RESUMO

The oviductal epithelium is crucial for the integrity of the female organ. Previously we got evidence that the surface proteome of oviductal epithelial cells (Oecs) is promptly altered in response to insemination and thus suggested that this early phase plays a notable regulatory role in maintaining cellular function. This study further aimed to assess the effect of semen on the cellular and molecular mechanisms in rabbit Oecs. A quantitative gel-based proteomic approach was applied to analyze changes at three time points (0h, 1h, 2h) after intrauterine insemination (IUI) compared to time matched controls. Within two hours the abundance of 22 protein species was evidently altered in the intracellular fraction. Functional analysis revealed that the proteins were primarily involved in proteostasis as well as metabolic processes. The analysis of phosphoproteins specified a role of mitogen-activated protein kinase (MAPK) signaling molecules. Concurrently, semen increased oviduct-specific glycoprotein (OVGP1) secretion. A correlation between OVGP1 abundance and microtubule-associated proteins 1A/1B-light chain 3 lipidation was observed. The localization and changes in abundance of selected proteins were corroborated by antibody-based methods. These results clearly show that the early phase of interaction acts as a trigger for cellular adaptation to meet an altered demand in the female organ. SIGNIFICANCE: The oviductal epithelium and its secreted proteins exert a pivotal role in reproductive processes, including the final maturation of male gametes. Thereby, the regulation and subsequently the functionality of the oviductal epithelial cell layer are important factors for the establishment of the appropriate milieu in the female reproductive tract. Notably, male gametes themselves have been shown to be an extrinsic modulatory factor of the oviductal epithelium. Accordingly a comprehensive knowledge about the underlying cellular and molecular mechanisms in the epithelial cells is of interest, also with regard to in vitro purposes. So far, the role of the early phase of interaction in the female organ has not been considered in detail. To get a further insight into the underlying cellular and molecular mechanisms, herein we analyzed the effect of semen on oviductal epithelial cells (Oecs) on the intracellular proteome level within the first two hours after insemination. The present study revealed a directed response of Oecs in vivo and disclosed intracellular pathways that are affected by the interplay between semen and the female reproductive tract. The prompt adaptation of the secretory activity and remodeling of the oviductal epithelium was accompanied by the concerted alterations of protein species that are primarily involved in the maintenance of cellular homeostasis. Besides emphasizing the importance of the early interaction phase for subsequent reproductive processes, the gained knowledge might further be implemented for in vitro applications as well.


Assuntos
Células Epiteliais/metabolismo , Oviductos/citologia , Proteômica/métodos , Proteostase , Sêmen/fisiologia , Animais , Feminino , Humanos , Inseminação , Masculino , Fosfoproteínas/análise , Proteoma/análise , Proteoma/metabolismo , Coelhos , Fatores de Tempo
2.
Methods Mol Biol ; 1295: 305-21, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25820731

RESUMO

Methods for analyzing the phosphorylation status of proteins are essential to investigate in detail key cellular processes, including signal transduction and cell metabolism. The transience of this post-translational modification and the generally low abundance of phosphoproteins require specific enrichment and/or detection steps prior to analysis. Here, we describe three gel-based approaches for the analysis of differentially expressed phosphoproteins. These approaches comprise (1) the sequential fluorescence staining of two-dimensional (2-D) gels using Pro-Q(®) Diamond and SYPRO(®) Ruby dyes to visualize and quantify phosphoproteins in total cellular lysates as well as (2) affinity enrichment of phosphoproteins in conjunction with sequential fluorescence staining of the 2-D gels and (3) affinity enrichment of proteins prior to pre-electrophoretic fluorescence labeling and 2-D gel electrophoresis.


Assuntos
Fosfoproteínas/metabolismo , Proteoma , Proteômica , Cromatografia de Afinidade , Eletroforese em Gel Bidimensional , Proteômica/métodos
3.
Anal Biochem ; 476: 17-9, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25640586

RESUMO

Due to post-translational modifications such as phosphorylation, proteins exist as distinct charge variants. Two-dimensional (2D) gel electrophoresis followed by immunoblotting enables the detection of these isoforms. For their accurate relative quantitation in different samples, a loading control is necessary to compensate for technical errors such as imprecise sample loading or transfer. The study reveals that the combinatory approach of SYPRO Ruby and chemiluminescence-based 2D Western blot analysis exhibits high linearity and excellent reproducibility and is applicable for limited sample amounts.


Assuntos
Eletroforese em Gel Bidimensional/métodos , Compostos Organometálicos/química , Western Blotting
4.
J Proteomics ; 113: 1-14, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25281772

RESUMO

Sophisticated strategies to analyze cell surface proteins are indispensable to study fundamental biological processes, such as the response of cells to environmental changes or cell-cell communication. Herein, we describe a refined mass spectrometry-based approach for the specific characterization and quantitation of cell surface proteins expressed in the female reproductive tract. The strategy is based on in situ biotinylation of rabbit oviducts, affinity enrichment of surface exposed biotin tagged proteins and dimethyl labeling of the obtained tryptic peptides followed by LC-MS/MS analysis. This approach proved to be sensitive enough to analyze small sample amounts (<1µg) and allowed further to trace the dynamic composition of the surface proteome of the oviductal epithelium in response to male gametes. The relative protein expression ratios of 175 proteins were quantified. Thirty-one of them were found to be altered over time, namely immediately, 1h and 2h after insemination compared to the time-matched control groups. Functional analysis demonstrated that structural reorganization of the oviductal epithelial cell surface was involved in the early response of the female organ to semen. In summary, this study outlines a workflow that is capable to monitor alterations in the female oviduct that are related to key reproductive processes in vivo. BIOLOGICAL SIGNIFICANCE: The proper interaction between the female reproductive tract, in particular, the oviduct and the male gametes, is fundamental to fertilization and embryonic development under physiological conditions. Thereby the oviductal epithelial cell surface proteins play an important role. Besides their direct interaction with male gametes, these molecules participate in signal transduction and, thus, are involved in the mandatory cellular response of the oviductal epithelium. In this study we present a refined LC-MS/MS based workflow that is capable to quantitatively analyze the expression of oviductal epithelial cell surface proteins in response to insemination in vivo. A special focus was on the very early interaction between the female organ and the male gametes. At first, this study clearly revealed an immediate response of the surface proteome to semen, which was modulated over time. The described methodology can be applied for studies of further distinct biological events in the oviduct and therefore contribute to a deeper insight into the formation of new life.


Assuntos
Comunicação Celular/fisiologia , Células Epiteliais/metabolismo , Tubas Uterinas/metabolismo , Proteínas de Membrana/biossíntese , Proteômica , Espermatozoides/metabolismo , Animais , Células Epiteliais/citologia , Tubas Uterinas/citologia , Feminino , Masculino , Coelhos , Espermatozoides/citologia
5.
Proteomics ; 13(1): 12-6, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23161651

RESUMO

The reversible change of the phosphorylation state of proteins regulates key cellular processes. In the present study, three different gel-based approaches were compared with regard to their applicability to quantitatively analyse the phosphoproteome of scarce biological material obtained ex vivo. Our results show that the phosphoproteome characterisation of oviductal epithelial cells isolated from the female reproductive tract requires affinity enrichment and pre-electrophoretic labelling using fluorescence dyes. Using this approach, 30 µg of enriched phosphoproteins proved to be sufficient for the phosphoproteome characterisation. In contrast, sequential fluorescence staining of 2D-separated total cell lysates as well as sequential staining in conjunction with a pre-enrichment step led to detection discrepancies and excluded further analysis steps. Information gained from this study provides a successful approach for the phosphoproteome analysis of scarce samples. In addition, the cellular processes taking place in the female reproductive tract can be monitored ex vivo.


Assuntos
Fosfoproteínas , Proteômica , Eletroforese em Gel Bidimensional/métodos , Células Epiteliais/metabolismo , Tubas Uterinas/química , Tubas Uterinas/metabolismo , Feminino , Humanos , Fosfoproteínas/classificação , Fosfoproteínas/isolamento & purificação , Fosforilação
6.
Microb Ecol ; 61(3): 496-506, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21049271

RESUMO

Vibrio cholerae is a human pathogen and natural inhabitant of aquatic environments. Serogroups O1/O139 have been associated with epidemic cholera, while non-O1/non-O139 serogroups usually cause human disease other than classical cholera. V. cholerae non-O1/non-O139 from the Neusiedler See, a large Central European lake, have caused ear and wound infections, including one case of fatal septicaemia. Recent investigations demonstrated rapid planktonic growth of V. cholerae non-O1/non-O139 and correlation with zooplankton biomass. The aim of this study was to elucidate the interaction of autochthonous V. cholerae with two dominant crustacean zooplankton species in the lake and investigate the influence of the natural bacterial community on this interaction. An existing data set was evaluated for statistical relationships between zooplankton species and V. cholerae and co-culture experiments were performed in the laboratory. A new fluorescence in situ hybridisation protocol was applied for quantification of V. cholerae non-O1/non-O139 cells, which significantly reduced analysis time. The experiments clearly demonstrated a significant relationship of autochthonous V. cholerae non-O1/non-O139 with cladocerans by promoting growth of V. cholerae non-O1/non-O139 in the water and on the surfaces of the cladocerans. In contrast, copepods had a negative effect on the growth of V. cholerae non-O1/non-O139 via competing bacteria from their surfaces. Thus, beside other known factors, biofilm formation by V. cholerae on crustacean zooplankton appears to be zooplankton taxon specific and may be controlled by the natural bacterial community.


Assuntos
Cladocera/microbiologia , Copépodes/microbiologia , Vibrio cholerae não O1/crescimento & desenvolvimento , Microbiologia da Água , Animais , Áustria , Contagem de Colônia Microbiana , Hibridização in Situ Fluorescente , Temperatura , Zooplâncton/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA