Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(35): e2114064119, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35994659

RESUMO

Plants are resistant to most microbial species due to nonhost resistance (NHR), providing broad-spectrum and durable immunity. However, the molecular components contributing to NHR are poorly characterised. We address the question of whether failure of pathogen effectors to manipulate nonhost plants plays a critical role in NHR. RxLR (Arg-any amino acid-Leu-Arg) effectors from two oomycete pathogens, Phytophthora infestans and Hyaloperonospora arabidopsidis, enhanced pathogen infection when expressed in host plants (Nicotiana benthamiana and Arabidopsis, respectively) but the same effectors performed poorly in distantly related nonhost pathosystems. Putative target proteins in the host plant potato were identified for 64 P. infestans RxLR effectors using yeast 2-hybrid (Y2H) screens. Candidate orthologues of these target proteins in the distantly related non-host plant Arabidopsis were identified and screened using matrix Y2H for interaction with RxLR effectors from both P. infestans and H. arabidopsidis. Few P. infestans effector-target protein interactions were conserved from potato to candidate Arabidopsis target orthologues (cAtOrths). However, there was an enrichment of H. arabidopsidis RxLR effectors interacting with cAtOrths. We expressed the cAtOrth AtPUB33, which unlike its potato orthologue did not interact with P. infestans effector PiSFI3, in potato and Nicotiana benthamiana. Expression of AtPUB33 significantly reduced P. infestans colonization in both host plants. Our results provide evidence that failure of pathogen effectors to interact with and/or correctly manipulate target proteins in distantly related non-host plants contributes to NHR. Moreover, exploiting this breakdown in effector-nonhost target interaction, transferring effector target orthologues from non-host to host plants is a strategy to reduce disease.


Assuntos
Arabidopsis , Resistência à Doença , Especificidade de Hospedeiro , Nicotiana , Doenças das Plantas , Proteínas de Plantas , Arabidopsis/metabolismo , Arabidopsis/parasitologia , Oomicetos/metabolismo , Phytophthora infestans/metabolismo , Doenças das Plantas/parasitologia , Doenças das Plantas/prevenção & controle , Proteínas de Plantas/metabolismo , Solanum tuberosum/parasitologia , Nicotiana/metabolismo , Nicotiana/parasitologia , Técnicas do Sistema de Duplo-Híbrido
2.
Plant Biotechnol J ; 20(1): 89-102, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34487614

RESUMO

The Microrchidia (MORC) family proteins are important nuclear regulators in both animals and plants with critical roles in epigenetic gene silencing and genome stabilization. In the crop plant barley (Hordeum vulgare), seven MORC gene family members have been described. While barley HvMORC1 has been functionally characterized, very little information is available about other HvMORC paralogs. In this study, we elucidate the role of HvMORC6a and its potential interactors in regulating plant immunity via analysis of CRISPR/SpCas9-mediated single and double knockout (dKO) mutants, hvmorc1 (previously generated and characterized by our group), hvmorc6a, and hvmorc1/6a. For generation of hvmorc1/6a, we utilized two different strategies: (i) successive Agrobacterium-mediated transformation of homozygous single mutants, hvmorc1 and hvmorc6a, with the respective second construct, and (ii) simultaneous transformation with both hvmorc1 and hvmorc6a CRISPR/SpCas9 constructs. Total mutation efficiency in transformed homozygous single mutants ranged from 80 to 90%, while upon simultaneous transformation, SpCas9-induced mutation in both HvMORC1 and HvMORC6a genes was observed in 58% of T0 plants. Subsequent infection assays showed that HvMORC6a covers a key role in resistance to biotrophic (Blumeria graminis) and necrotrophic (Fusarium graminearum) plant pathogenic fungi, where the dKO hvmorc1/6a showed the strongest resistant phenotype. Consistent with this, the dKO showed highest levels of basal PR gene expression and derepression of TEs. Finally, we demonstrate that HvMORC1 and HvMORC6a form distinct nucleocytoplasmic homo-/heteromers with other HvMORCs and interact with components of the RNA-directed DNA methylation (RdDM) pathway, further substantiating that MORC proteins are involved in the regulation of TEs in barley.


Assuntos
Hordeum , Sistemas CRISPR-Cas/genética , Regulação da Expressão Gênica de Plantas/genética , Inativação Gênica , Hordeum/metabolismo , Doenças das Plantas/microbiologia , Imunidade Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
4.
PLoS One ; 16(8): e0252365, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34351929

RESUMO

In filamentous fungi, gene silencing by RNA interference (RNAi) shapes many biological processes, including pathogenicity. Recently, fungal small RNAs (sRNAs) have been shown to act as effectors that disrupt gene activity in interacting plant hosts, thereby undermining their defence responses. We show here that the devastating mycotoxin-producing ascomycete Fusarium graminearum (Fg) utilizes DICER-like (DCL)-dependent sRNAs to target defence genes in two Poaceae hosts, barley (Hordeum vulgare, Hv) and Brachypodium distachyon (Bd). We identified 104 Fg-sRNAs with sequence homology to host genes that were repressed during interactions of Fg and Hv, while they accumulated in plants infected by the DCL double knock-out (dKO) mutant PH1-dcl1/2. The strength of target gene expression correlated with the abundance of the corresponding Fg-sRNA. Specifically, the abundance of three tRNA-derived fragments (tRFs) targeting immunity-related Ethylene overproducer 1-like 1 (HvEOL1) and three Poaceae orthologues of Arabidopsis thaliana BRI1-associated receptor kinase 1 (HvBAK1, HvSERK2 and BdSERK2) was dependent on fungal DCL. Additionally, RNA-ligase-mediated Rapid Amplification of cDNA Ends (RLM-RACE) identified infection-specific degradation products for the three barley gene transcripts, consistent with the possibility that tRFs contribute to fungal virulence via targeted gene silencing.


Assuntos
Brachypodium , Fusarium/fisiologia , Hordeum , Interações Hospedeiro-Patógeno , Doenças das Plantas/microbiologia , RNA Fúngico/metabolismo , Ribonuclease III/metabolismo , Fatores de Virulência/metabolismo , Brachypodium/metabolismo , Brachypodium/microbiologia , Proteínas Fúngicas , Hordeum/metabolismo , Hordeum/microbiologia , Doenças das Plantas/genética , RNA Fúngico/genética , Ribonuclease III/genética , Fatores de Virulência/genética
6.
Nat Plants ; 6(10): 1275-1288, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33020609

RESUMO

Polar growth requires the precise tuning of Rho GTPase signalling at distinct plasma membrane domains. The activity of Rho of plant (ROP) GTPases is regulated by the opposing action of guanine nucleotide-exchange factors (GEFs) and GTPase-activating proteins (GAPs). Whereas plant-specific ROPGEFs have been shown to be embedded in higher-level regulatory mechanisms involving membrane-bound receptor-like kinases, the regulation of GAPs has remained enigmatic. Here, we show that three Arabidopsis ARMADILLO REPEAT ONLY (ARO) proteins are essential for the stabilization of growth sites in root hair cells and trichomes. AROs interact with ROP1 enhancer GAPs (RENGAPs) and bind to the plasma membrane via a conserved polybasic region at the ARO amino terminus. The ectopic spreading of ROP2 in aro2/3/4 mutant root hair cells and the preferential interaction of AROs with active ROPs and anionic phospholipids suggests that AROs recruit RENGAPs into complexes with ROPs to confine ROP signalling to distinct membrane regions.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas do Domínio Armadillo/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Transdução de Sinais , Proteínas rho de Ligação ao GTP/metabolismo , Arabidopsis/citologia , Arabidopsis/enzimologia , Arabidopsis/crescimento & desenvolvimento , Polaridade Celular , Proteínas de Ligação a DNA/metabolismo , Evolução Molecular , Raízes de Plantas/citologia , Raízes de Plantas/metabolismo , Tricomas/citologia , Tricomas/metabolismo
7.
PLoS Pathog ; 16(8): e1008835, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32785253

RESUMO

Hyaloperonospora arabidopsidis (Hpa) is an oomycete pathogen causing Arabidopsis downy mildew. Effector proteins secreted from the pathogen into the plant play key roles in promoting infection by suppressing plant immunity and manipulating the host to the pathogen's advantage. One class of oomycete effectors share a conserved 'RxLR' motif critical for their translocation into the host cell. Here we characterize the interaction between an RxLR effector, HaRxL21 (RxL21), and the Arabidopsis transcriptional co-repressor Topless (TPL). We establish that RxL21 and TPL interact via an EAR motif at the C-terminus of the effector, mimicking the host plant mechanism for recruiting TPL to sites of transcriptional repression. We show that this motif, and hence interaction with TPL, is necessary for the virulence function of the effector. Furthermore, we provide evidence that RxL21 uses the interaction with TPL, and its close relative TPL-related 1, to repress plant immunity and enhance host susceptibility to both biotrophic and necrotrophic pathogens.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Interações Hospedeiro-Patógeno/imunologia , Oomicetos/fisiologia , Doenças das Plantas/imunologia , Imunidade Vegetal/imunologia , Fatores de Virulência/metabolismo , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/microbiologia , Virulência , Fatores de Virulência/genética
8.
Front Plant Sci ; 8: 1720, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29093720

RESUMO

Microrchidia (MORC) proteins comprise a family of proteins that have been identified in prokaryotes and eukaryotes. They are defined by two hallmark domains: a GHKL-type ATPase and an S5 fold. MORC proteins in plants were first discovered via a genetic screen for Arabidopsis mutants compromised for resistance to a viral pathogen. Subsequent studies expanded their role in plant immunity and revealed their involvement in gene silencing and transposable element repression. Emerging data suggest that MORC proteins also participate in pathogen-induced chromatin remodeling and epigenetic gene regulation. In addition, biochemical analyses recently demonstrated that plant MORCs have topoisomerase II (topo II)-like DNA modifying activities that may be important for their function. Interestingly, animal MORC proteins exhibit many parallels with their plant counterparts, as they have been implicated in disease development and gene silencing. In addition, human MORCs, like plant MORCs, bind salicylic acid and this inhibits some of their topo II-like activities. In this review, we will focus primarily on plant MORCs, although relevant comparisons with animal MORCs will be provided.

9.
Front Plant Sci ; 6: 906, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26579156

RESUMO

Pathogenic and mutualistic microbes actively suppress plant defense by secreting effector proteins to manipulate the host responses for their own benefit. Current knowledge about fungal effectors has been mainly derived from biotrophic and hemibiotrophic plant pathogenic fungi and oomycetes with restricted host range. We studied colonization strategies of the root endophytic basidiomycete Piriformospora indica that colonizes a wide range of plant species thereby establishing long-term mutualistic relationships. The release of P. indica's genome helped to identify hundreds of genes coding for candidate effectors and provides an opportunity to investigate the role of those proteins in a mutualistic symbiosis. We demonstrate that the candidate effector PIIN_08944 plays a crucial role during fungal colonization of Arabidopsis thaliana roots. PIIN_08944 expression was detected during chlamydospore germination, and fungal deletion mutants (PiΔ08944) showed delayed root colonization. Constitutive over-expression of PIIN_08944 in Arabidopsis rescued the delayed colonization phenotype of the deletion mutant. PIIN_08944-expressing Arabidopsis showed a reduced expression of flg22-induced marker genes of pattern-triggered immunity (PTI) and the salicylic acid (SA) defense pathway, and expression of PIIN_08944 in barley reduced the burst of reactive oxygen species (ROS) triggered by flg22 and chitin. These data suggest that PIIN_08944 contributes to root colonization by P. indica by interfering with SA-mediated basal immune responses of the host plant. Consistent with this, PIIN_08944-expressing Arabidopsis also supported the growth of the biotrophic oomycete Hyaloperonospora arabidopsidis while growth of the necrotrophic fungi Botrytis cinerea on Arabidopsis and Fusarium graminearum on barley was not affected.

10.
Plant Cell ; 27(11): 3038-64, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26566919

RESUMO

Transcriptional reprogramming is integral to effective plant defense. Pathogen effectors act transcriptionally and posttranscriptionally to suppress defense responses. A major challenge to understanding disease and defense responses is discriminating between transcriptional reprogramming associated with microbial-associated molecular pattern (MAMP)-triggered immunity (MTI) and that orchestrated by effectors. A high-resolution time course of genome-wide expression changes following challenge with Pseudomonas syringae pv tomato DC3000 and the nonpathogenic mutant strain DC3000hrpA- allowed us to establish causal links between the activities of pathogen effectors and suppression of MTI and infer with high confidence a range of processes specifically targeted by effectors. Analysis of this information-rich data set with a range of computational tools provided insights into the earliest transcriptional events triggered by effector delivery, regulatory mechanisms recruited, and biological processes targeted. We show that the majority of genes contributing to disease or defense are induced within 6 h postinfection, significantly before pathogen multiplication. Suppression of chloroplast-associated genes is a rapid MAMP-triggered defense response, and suppression of genes involved in chromatin assembly and induction of ubiquitin-related genes coincide with pathogen-induced abscisic acid accumulation. Specific combinations of promoter motifs are engaged in fine-tuning the MTI response and active transcriptional suppression at specific promoter configurations by P. syringae.


Assuntos
Arabidopsis/imunologia , Terapia de Imunossupressão , Moléculas com Motivos Associados a Patógenos/metabolismo , Imunidade Vegetal/genética , Folhas de Planta/imunologia , Pseudomonas syringae/fisiologia , Transcrição Gênica , Arabidopsis/genética , Arabidopsis/microbiologia , Sequência de Bases , Cromatina/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Redes Reguladoras de Genes , Genes de Plantas , Dados de Sequência Molecular , Motivos de Nucleotídeos/genética , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Folhas de Planta/microbiologia , Regiões Promotoras Genéticas/genética , Pseudomonas syringae/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo
11.
Methods Mol Biol ; 1127: 145-58, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24643559

RESUMO

There is a considerable interest in determining the role of individual oomycete effectors in promoting disease. Widely used strategies are based on manipulating effector-expression levels in the pathogen and by over-expressing particular effectors in the host by genetic transformation. In the case of the oomycete, Hyaloperonospora arabidopsidis (Hpa) genetic manipulation is not yet possible, so over-expression of predicted effectors in stably transformed Arabidopsis lines is used to investigate their capability for promoting virulence. Here, we describe a technique for quantifying pathogen growth based on the counting of asexual reproductive structures called sporangiophores in the compatible interaction between the Hpa isolate Noks1 and the Col-0 Arabidopsis accession.


Assuntos
Arabidopsis/microbiologia , Bioensaio/métodos , Oomicetos/isolamento & purificação , Células Cultivadas , Plantas Geneticamente Modificadas , Esporos/fisiologia
12.
Methods Mol Biol ; 1127: 195-211, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24643563

RESUMO

Plant pathogens are responsible for enormous damage in natural and cultured ecosystems. One strategy most pathogenic organisms follow is the secretion of effector proteins that manipulate the host immune system to suppress defense responses. There is considerable interest in finding host targets of pathogen effectors as this helps to shape our understanding of how those proteins work in planta. The presented protocol describes a protein complex immunoprecipitation method aimed at verifying protein-protein interactions derived from protein complementation assays like Yeast-two-Hybrid.


Assuntos
Interações Hospedeiro-Patógeno , Imunoprecipitação/métodos , Proteínas de Plantas/metabolismo , Agrobacterium/citologia , Agrobacterium/metabolismo , Primers do DNA/metabolismo , Expressão Gênica , Proteínas de Fluorescência Verde/metabolismo , Fatores de Tempo , Nicotiana/citologia , Nicotiana/metabolismo , Transformação Genética
13.
New Phytol ; 201(4): 1358-1370, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24329768

RESUMO

• Pseudomonas syringae type III effectors are known to suppress plant immunity to promote bacterial virulence. However, the activities and targets of these effectors are not well understood. • We used genetic, molecular, and cell biology methods to characterize the activities, localization, and target of the HopD1 type III effector in Arabidopsis. • HopD1 contributes to P. syringae virulence in Arabidopsis and reduces effector-triggered immunity (ETI) responses but not pathogen-associated molecular pattern-triggered immunity (PTI) responses. Plants expressing HopD1 supported increased growth of ETI-inducing P. syringae strains compared with wild-type Arabidopsis. We show that HopD1 interacts with the membrane-tethered Arabidopsis transcription factor NTL9 and demonstrate that this interaction occurs at the endoplasmic reticulum (ER). A P. syringae hopD1 mutant and ETI-inducing P. syringae strains exhibited enhanced growth on Arabidopsis ntl9 mutant plants. Conversely, growth of P. syringae strains was reduced in plants expressing a constitutively active NTL9 derivative, indicating that NTL9 is a positive regulator of plant immunity. Furthermore, HopD1 inhibited the induction of NTL9-regulated genes during ETI but not PTI. • HopD1 contributes to P. syringae virulence in part by targeting NTL9, resulting in the suppression of ETI responses but not PTI responses and the promotion of plant pathogenicity.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Arabidopsis/microbiologia , Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos , Retículo Endoplasmático/metabolismo , Imunidade Vegetal , Pseudomonas syringae/patogenicidade , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Membrana Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Glucanos/metabolismo , Imunidade Inata , Ligação Proteica , Transporte Proteico , Pseudomonas syringae/crescimento & desenvolvimento , Receptores de Reconhecimento de Padrão/metabolismo , Explosão Respiratória , Virulência
14.
Plant J ; 69(2): 252-65, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21914011

RESUMO

Filamentous phytopathogens form sophisticated intracellular feeding structures called haustoria in plant cells. Pathogen effectors are likely to play a role in the establishment and maintenance of haustoria in addition to their better-characterized role in suppressing plant defence. However, the specific mechanisms by which these effectors promote virulence remain unclear. To address this question, we examined changes in subcellular architecture using live-cell imaging during the compatible interaction between the oomycete Hyaloperonospora arabidopsidis (Hpa) and its host Arabidopsis. We monitored host-cell restructuring of subcellular compartments within plant mesophyll cells during haustoria ontogenesis. Live-cell imaging highlighted rearrangements in plant cell membranes upon infection, in particular to the tonoplast, which was located close to the extra-haustorial membrane surrounding the haustorium. We also investigated the subcellular localization patterns of Hpa RxLR effector candidates (HaRxLs) in planta. We identified two major classes of HaRxL effector based on localization: nuclear-localized effectors and membrane-localized effectors. Further, we identified a single effector, HaRxL17, that associated with the tonoplast in uninfected cells and with membranes around haustoria, probably the extra-haustorial membrane, in infected cells. Functional analysis of selected effector candidates in planta revealed that HaRxL17 enhances plant susceptibility. The roles of subcellular changes and effector localization, with specific reference to the potential role of HaRxL17 in plant cell membrane trafficking, are discussed with respect to Hpa virulence.


Assuntos
Arabidopsis/imunologia , Interações Hospedeiro-Patógeno/imunologia , Oomicetos/patogenicidade , Doenças das Plantas/imunologia , Imunidade Vegetal/imunologia , Proteínas/metabolismo , Sequência de Aminoácidos , Arabidopsis/parasitologia , Arabidopsis/fisiologia , Arabidopsis/ultraestrutura , Núcleo Celular/metabolismo , Células Cultivadas , Regulação da Expressão Gênica de Plantas/fisiologia , Interações Hospedeiro-Patógeno/fisiologia , Células do Mesofilo/metabolismo , Dados de Sequência Molecular , Oomicetos/genética , Oomicetos/crescimento & desenvolvimento , Oomicetos/metabolismo , Doenças das Plantas/parasitologia , Plantas Geneticamente Modificadas , Polimorfismo Genético/genética , Transporte Proteico , Proteínas/genética , Plântula/imunologia , Plântula/parasitologia , Plântula/fisiologia , Plântula/ultraestrutura , Alinhamento de Sequência , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/ultraestrutura , Vacúolos/metabolismo , Virulência
15.
PLoS Pathog ; 7(11): e1002348, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22072967

RESUMO

Oomycete pathogens cause diverse plant diseases. To successfully colonize their hosts, they deliver a suite of effector proteins that can attenuate plant defenses. In the oomycete downy mildews, effectors carry a signal peptide and an RxLR motif. Hyaloperonospora arabidopsidis (Hpa) causes downy mildew on the model plant Arabidopsis thaliana (Arabidopsis). We investigated if candidate effectors predicted in the genome sequence of Hpa isolate Emoy2 (HaRxLs) were able to manipulate host defenses in different Arabidopsis accessions. We developed a rapid and sensitive screening method to test HaRxLs by delivering them via the bacterial type-three secretion system (TTSS) of Pseudomonas syringae pv tomato DC3000-LUX (Pst-LUX) and assessing changes in Pst-LUX growth in planta on 12 Arabidopsis accessions. The majority (~70%) of the 64 candidates tested positively contributed to Pst-LUX growth on more than one accession indicating that Hpa virulence likely involves multiple effectors with weak accession-specific effects. Further screening with a Pst mutant (ΔCEL) showed that HaRxLs that allow enhanced Pst-LUX growth usually suppress callose deposition, a hallmark of pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI). We found that HaRxLs are rarely strong avirulence determinants. Although some decreased Pst-LUX growth in particular accessions, none activated macroscopic cell death. Fewer HaRxLs conferred enhanced Pst growth on turnip, a non-host for Hpa, while several reduced it, consistent with the idea that turnip's non-host resistance against Hpa could involve a combination of recognized HaRxLs and ineffective HaRxLs. We verified our results by constitutively expressing in Arabidopsis a sub-set of HaRxLs. Several transgenic lines showed increased susceptibility to Hpa and attenuation of Arabidopsis PTI responses, confirming the HaRxLs' role in Hpa virulence. This study shows TTSS screening system provides a useful tool to test whether candidate effectors from eukaryotic pathogens can suppress/trigger plant defense mechanisms and to rank their effectiveness prior to subsequent mechanistic investigation.


Assuntos
Arabidopsis/imunologia , Oomicetos/metabolismo , Doenças das Plantas/imunologia , Proteínas/metabolismo , Pseudomonas syringae/crescimento & desenvolvimento , Arabidopsis/genética , Arabidopsis/microbiologia , Sistemas de Secreção Bacterianos , Brassica napus/imunologia , Brassica napus/microbiologia , Células Cultivadas , Regulação da Expressão Gênica de Plantas , Glucanos/biossíntese , Glucanos/metabolismo , Interações Hospedeiro-Patógeno , Oomicetos/genética , Oomicetos/crescimento & desenvolvimento , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Plantas Geneticamente Modificadas , Pseudomonas syringae/enzimologia , Pseudomonas syringae/imunologia , Proteínas Recombinantes de Fusão/metabolismo
16.
Science ; 333(6042): 596-601, 2011 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-21798943

RESUMO

Plants generate effective responses to infection by recognizing both conserved and variable pathogen-encoded molecules. Pathogens deploy virulence effector proteins into host cells, where they interact physically with host proteins to modulate defense. We generated an interaction network of plant-pathogen effectors from two pathogens spanning the eukaryote-eubacteria divergence, three classes of Arabidopsis immune system proteins, and ~8000 other Arabidopsis proteins. We noted convergence of effectors onto highly interconnected host proteins and indirect, rather than direct, connections between effectors and plant immune receptors. We demonstrated plant immune system functions for 15 of 17 tested host proteins that interact with effectors from both pathogens. Thus, pathogens from different kingdoms deploy independently evolved virulence proteins that interact with a limited set of highly connected cellular hubs to facilitate their diverse life-cycle strategies.


Assuntos
Arabidopsis/imunologia , Arabidopsis/metabolismo , Interações Hospedeiro-Patógeno , Doenças das Plantas/imunologia , Imunidade Vegetal , Receptores Imunológicos/metabolismo , Fatores de Virulência/metabolismo , Arabidopsis/genética , Arabidopsis/microbiologia , Proteínas de Bactérias/metabolismo , Evolução Molecular , Genes de Plantas , Imunidade Inata , Oomicetos/patogenicidade , Mapeamento de Interação de Proteínas , Pseudomonas syringae/patogenicidade
17.
Mol Syst Biol ; 6: 397, 2010 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-20706207

RESUMO

Cell proliferation is the main driving force for plant growth. Although genome sequence analysis revealed a high number of cell cycle genes in plants, little is known about the molecular complexes steering cell division. In a targeted proteomics approach, we mapped the core complex machinery at the heart of the Arabidopsis thaliana cell cycle control. Besides a central regulatory network of core complexes, we distinguished a peripheral network that links the core machinery to up- and downstream pathways. Over 100 new candidate cell cycle proteins were predicted and an in-depth biological interpretation demonstrated the hypothesis-generating power of the interaction data. The data set provided a comprehensive view on heterodimeric cyclin-dependent kinase (CDK)-cyclin complexes in plants. For the first time, inhibitory proteins of plant-specific B-type CDKs were discovered and the anaphase-promoting complex was characterized and extended. Important conclusions were that mitotic A- and B-type cyclins form complexes with the plant-specific B-type CDKs and not with CDKA;1, and that D-type cyclins and S-phase-specific A-type cyclins seem to be associated exclusively with CDKA;1. Furthermore, we could show that plants have evolved a combinatorial toolkit consisting of at least 92 different CDK-cyclin complex variants, which strongly underscores the functional diversification among the large family of cyclins and reflects the pivotal role of cell cycle regulation in the developmental plasticity of plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Proteínas de Ciclo Celular/metabolismo , Ciclo Celular , Biologia Computacional , Quinases Ciclina-Dependentes/metabolismo , Ciclinas/metabolismo , Replicação do DNA , Luciferases/metabolismo , Mitose , Modelos Biológicos , Complexos Multiproteicos/metabolismo , Ligação Proteica , Mapeamento de Interação de Proteínas , Reprodutibilidade dos Testes
18.
Appl Environ Microbiol ; 72(12): 7477-84, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17012596

RESUMO

Astaxanthin is a high-value carotenoid which is used as a pigmentation source in fish aquaculture. Additionally, a beneficial role of astaxanthin as a food supplement for humans has been suggested. The unicellular alga Haematococcus pluvialis is a suitable biological source for astaxanthin production. In the context of the strong biotechnological relevance of H. pluvialis, we developed a genetic transformation protocol for metabolic engineering of this green alga. First, the gene coding for the carotenoid biosynthesis enzyme phytoene desaturase was isolated from H. pluvialis and modified by site-directed mutagenesis, changing the leucine codon at position 504 to an arginine codon. In an in vitro assay, the modified phytoene desaturase was still active in conversion of phytoene to zeta-carotene and exhibited 43-fold-higher resistance to the bleaching herbicide norflurazon. Upon biolistic transformation using the modified phytoene desaturase gene as a reporter and selection with norflurazon, integration into the nuclear genome of H. pluvialis and phytoene desaturase gene and protein expression were demonstrated by Southern, Northern, and Western blotting, respectively, in 11 transformants. Some of the transformants had a higher carotenoid content in the green state, which correlated with increased nonphotochemical quenching. This measurement of chlorophyll fluorescence can be used as a screening procedure for stable transformants. Stress induction of astaxanthin biosynthesis by high light showed that there was accelerated accumulation of astaxanthin in one of the transformants compared to the accumulation in the wild type. Our results strongly indicate that the modified phytoene desaturase gene is a useful tool for genetic engineering of carotenoid biosynthesis in H. pluvialis.


Assuntos
Clorófitas/enzimologia , Engenharia Genética/métodos , Oxirredutases/genética , Oxirredutases/metabolismo , Transformação Genética , Biotecnologia/métodos , Carotenoides/metabolismo , Clorófitas/genética , Vetores Genéticos , Dados de Sequência Molecular , Análise de Sequência de DNA , Xantofilas/biossíntese
19.
Plant Mol Biol ; 52(2): 343-56, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12856941

RESUMO

The unicellular green alga Haematococcus pluvialis accumulates large amounts of the red ketocarotenoid astaxanthin when exposed to various stress situations such as salt stress and high light intensities. Here, the light regulation of Haematococcus carotenoid biosynthesis was examined. Isolation and characterization of the lycopene beta cyclase gene involved in carotenoid biosynthesis was carried out using a functional complementation approach. Subsequently, gene expression of lycopene cyclase, phytoene synthase, phytoene desaturase and carotenoid hydroxylase was analysed in green flagellate cells. All four genes revealed higher transcript levels in response to increased illumination. Not only the induction of astaxanthin biosynthesis but also carotenoid gene expression was found to be correlated with the redox state of the photosynthetic electron transport. In accordance with this result, increased transcript levels for carotenoid biosynthesis genes were detected under both blue and red light conditions. The application of different inhibitors of the photosynthetic electron flow indicated that the photosynthetic plastoquinone pool functions as the redox sensor for the up-regulation of carotenoid biosynthesis genes. These results suggested that in Haematococcus not only the specific astaxanthin pathway but also general carotenoid biosynthesis is subject to photosynthetic redox control.


Assuntos
Carotenoides/biossíntese , Clorófitas/genética , beta Caroteno/análogos & derivados , Sequência de Aminoácidos , Clorófitas/metabolismo , DNA Complementar/química , DNA Complementar/genética , Relação Dose-Resposta à Radiação , Regulação da Expressão Gênica/efeitos da radiação , Liases Intramoleculares/genética , Liases Intramoleculares/metabolismo , Luz , Dados de Sequência Molecular , Oxirredução/efeitos da radiação , Fotossíntese/fisiologia , Fotossíntese/efeitos da radiação , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Fatores de Tempo , Xantofilas , beta Caroteno/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...