Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nanobiotechnology ; 15(1): 79, 2017 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-29121949

RESUMO

BACKGROUND: When evaluating the toxicity of engineered nanomaterials (ENMS) it is important to use multiple bioassays based on different mechanisms of action. In this regard we evaluated the use of gene expression and common cytotoxicity measurements using as test materials, two selected nanoparticles with known differences in toxicity, 5 nm mercaptoundecanoic acid (MUA)-capped InP and CdSe quantum dots (QDs). We tested the effects of these QDs at concentrations ranging from 0.5 to 160 µg/mL on cultured normal human bronchial epithelial (NHBE) cells using four common cytotoxicity assays: the dichlorofluorescein assay for reactive oxygen species (ROS), the lactate dehydrogenase assay for membrane viability (LDH), the mitochondrial dehydrogenase assay for mitochondrial function, and the Comet assay for DNA strand breaks. RESULTS: The cytotoxicity assays showed similar trends when exposed to nanoparticles for 24 h at 80 µg/mL with a threefold increase in ROS with exposure to CdSe QDs compared to an insignificant change in ROS levels after exposure to InP QDs, a twofold increase in the LDH necrosis assay in NHBE cells with exposure to CdSe QDs compared to a 50% decrease for InP QDs, a 60% decrease in the mitochondrial function assay upon exposure to CdSe QDs compared to a minimal increase in the case of InP and significant DNA strand breaks after exposure to CdSe QDs compared to no significant DNA strand breaks with InP. High-throughput quantitative real-time polymerase chain reaction (qRT-PCR) data for cells exposed for 6 h at a concentration of 80 µg/mL were consistent with the cytotoxicity assays showing major differences in DNA damage, DNA repair and mitochondrial function gene regulatory responses to the CdSe and InP QDs. The BRCA2, CYP1A1, CYP1B1, CDK1, SFN and VEGFA genes were observed to be upregulated specifically from increased CdSe exposure and suggests their possible utility as biomarkers for toxicity. CONCLUSIONS: This study can serve as a model for comparing traditional cytotoxicity assays and gene expression measurements and to determine candidate biomarkers for assessing the biocompatibility of ENMs.


Assuntos
Bioensaio , Compostos de Cádmio/toxicidade , Células Epiteliais/efeitos dos fármacos , Ácidos Graxos/toxicidade , Nanopartículas/toxicidade , Pontos Quânticos/toxicidade , Compostos de Selênio/toxicidade , Compostos de Sulfidrila/toxicidade , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Biomarcadores/metabolismo , Brônquios/citologia , Brônquios/efeitos dos fármacos , Brônquios/metabolismo , Linhagem Celular , Membrana Celular/química , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Ensaio Cometa , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Fluoresceínas/química , Corantes Fluorescentes/química , Expressão Gênica/efeitos dos fármacos , Humanos , L-Lactato Desidrogenase/genética , L-Lactato Desidrogenase/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Desnaturação de Ácido Nucleico/efeitos dos fármacos , Oxirredutases/genética , Oxirredutases/metabolismo , Espécies Reativas de Oxigênio/agonistas , Espécies Reativas de Oxigênio/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
2.
ACS Nano ; 7(10): 8397-411, 2013 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-24007210

RESUMO

Quantum dots (QDs) are semiconductor nanocrystals exhibiting unique optical properties that can be exploited for many practical applications ranging from photovoltaics to biomedical imaging and drug delivery. A significant number of studies have alluded to the cytotoxic potential of these materials, implicating Cd-leaching as the causal factor. Here, we investigated the role of heavy metals in biological responses and the potential of CdSe-induced genotoxicity. Our results indicate that, while negatively charged QDs are relatively noncytotoxic compared to positively charged QDs, the same does not hold true for their genotoxic potential. Keeping QD core composition and size constant, 3 nm CdSe QD cores were functionalized with mercaptopropionic acid (MPA) or cysteamine (CYST), resulting in negatively or positively charged surfaces, respectively. CYST-QDs were found to induce significant cytotoxicity accompanied by DNA strand breakage. However, MPA-QDs, even in the absence of cytotoxicity and reactive oxygen species formation, also induced a high number of DNA strand breaks. QD-induced DNA damage was confirmed by identifying the presence of p53 binding protein 1 (53BP1) in the nuclei of exposed cells and subsequent diminishment of p53 from cytoplasmic cellular extracts. Further, high-throughput real-time PCR analyses revealed upregulation of DNA damage and response genes and several proinflammatory cytokine genes. Most importantly, transcriptome sequencing revealed upregulation of the metallothionein family of genes in cells exposed to MPA-QDs but not CYST-QDs. These data indicate that cytotoxic assays must be supplemented with genotoxic analyses to better understand cellular responses and the full impact of nanoparticle exposure when making recommendations with regard to risk assessment.


Assuntos
Brônquios/citologia , Compostos de Cádmio/química , Sobrevivência Celular , Pontos Quânticos , Compostos de Selênio/química , Brônquios/metabolismo , Células Cultivadas , Dano ao DNA , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Expressão Gênica , Humanos , Espécies Reativas de Oxigênio/metabolismo
3.
Opt Express ; 21(16): 19012-21, 2013 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-23938816

RESUMO

We study the nonlinear optical properties of lithium niobate (LiNbO(3)) nanowires (NWs) fabricated by a top-down ion beam enhanced etching method. First, we demonstrate generation and propagation of the second-harmonic (SH) light in LiNbO(3) NWs of typical rectangular cross-sections of 400 x 600 nm(2) and length from 10 to 50 µm. Then, we show local fluorescent excitation of 4',6-diamidino-2-phenylindole (DAPI) dye with the propagated SH signal in standard concentrations as for biological applications. By measuring the detected average power of the propagated fundamental harmonic (FH) and the SH signal at the output of the NWs, we directly prove the dominating role of the SH signal over possible two-photon excitation processes with the FH in the DAPI dye. We estimate that 63 ± 6 pW of the propagated SH average power is required for detectable dye excitation. Finally, we model the waveguiding of the SH light to determine the smallest NW cross-section (around 40x60 nm(2)) which is potentially able to excite fluorescence with a FH intensity below the cell damage threshold.

4.
ACS Nano ; 7(6): 5343-9, 2013 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-23691915

RESUMO

We investigate the second-harmonic generation (SHG) signal from single BaTiO3 nanoparticles of diameters varying from 70 nm down to 22 nm with a far-field optical microscope coupled to an infrared femtosecond laser. An atomic force microscope is first used to localize the individual particles and to accurately determine their sizes. Power and polarization-dependent measurements on the individual nanoparticles reveal a diameter range between 30 and 20 nm, where deviations from bulk nonlinear optical properties occur. For 22 nm diameter particles, the tetragonal crystal structure is not applicable anymore and competing effects due to the surface to volume ratio or crystallographic modifications are taking place. The demonstration of SHG from such small nanoparticles opens up the possibilities of using them as bright coherent biomarkers. Moreover, our work shows that measuring the SHG of individual nanoparticles reveals critical material properties, opening up new possibilities to investigate ferroelectricity at the nanoscale.


Assuntos
Compostos de Bário/química , Nanopartículas/química , Nanotecnologia/métodos , Tamanho da Partícula , Titânio/química , Fenômenos Ópticos
5.
Nat Commun ; 3: 908, 2012 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-22713750

RESUMO

Nanocrystal quantum dots are attractive materials for applications as nanoscale light sources. One impediment to these applications is fluctuations of single-dot emission intensity, known as blinking. Recent progress in colloidal synthesis has produced nonblinking nanocrystals; however, the physics underlying blinking suppression remains unclear. Here we find that ultra-thick-shell CdSe/CdS nanocrystals can exhibit pronounced fluctuations in the emission lifetimes (lifetime blinking), despite stable nonblinking emission intensity. We demonstrate that lifetime variations are due to switching between the neutral and negatively charged state of the nanocrystal. Negative charging results in faster radiative decay but does not appreciably change the overall emission intensity because of suppressed nonradiative Auger recombination for negative trions. The Auger process involving excitation of a hole (positive trion pathway) remains efficient and is responsible for charging with excess electrons, which occurs via Auger-assisted ionization of biexcitons accompanied by ejection of holes.


Assuntos
Nanopartículas , Pontos Quânticos , Nanotecnologia
6.
ACS Nano ; 6(6): 4748-62, 2012 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-22587339

RESUMO

The growing potential of quantum dots (QDs) in applications as diverse as biomedicine and energy has provoked much dialogue about their conceivable impact on human health and the environment at large. Consequently, there has been an urgent need to understand their interaction with biological systems. Parameters such as size, composition, surface charge, and functionalization can be modified in ways to either enhance biocompatibility or reduce their deleterious effects. In the current study, we simultaneously compared the impact of size, charge, and functionalization alone or in combination on biological responses using primary normal human bronchial epithelial cells. Using a suite of cellular end points and gene expression analysis, we determined the biological impact of each of these properties. Our results suggest that positively charged QDs are significantly more cytotoxic compared to negative QDs. Furthermore, while QDs functionalized with long ligands were found to be more cytotoxic than those functionalized with short ligands, negative QDs functionalized with long ligands also demonstrated size-dependent cytotoxicity. We conclude that QD-elicited cytotoxicity is not a function of a single property but a combination of factors. The mechanism of toxicity was found to be independent of reactive oxygen species formation, as cellular viability could not be rescued in the presence of the antioxidant n-acetyl cysteine. Further exploring these responses at the molecular level, we found that the relatively benign negative QDs increased gene expression of proinflammatory cytokines and those associated with DNA damage, while the highly toxic positive QDs induced changes in genes associated with mitochondrial function. In an attempt to tentatively "rank" the contribution of each property in the observed QD-induced responses, we concluded that QD charge and ligand length, and to a lesser extent, size, are key factors that should be considered when engineering nanomaterials with minimal bioimpact (charge > functionalization > size).


Assuntos
Brônquios/efeitos dos fármacos , Compostos de Cádmio/toxicidade , Pontos Quânticos , Compostos de Selênio/toxicidade , Titânio/química , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Teste de Materiais , Tamanho da Partícula , Eletricidade Estática
7.
Nature ; 479(7372): 203-7, 2011 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-22071764

RESUMO

Photoluminescence blinking--random switching between states of high (ON) and low (OFF) emissivities--is a universal property of molecular emitters found in dyes, polymers, biological molecules and artificial nanostructures such as nanocrystal quantum dots, carbon nanotubes and nanowires. For the past 15 years, colloidal nanocrystals have been used as a model system to study this phenomenon. The occurrence of OFF periods in nanocrystal emission has been commonly attributed to the presence of an additional charge, which leads to photoluminescence quenching by non-radiative recombination (the Auger mechanism). However, this 'charging' model was recently challenged in several reports. Here we report time-resolved photoluminescence studies of individual nanocrystal quantum dots performed while electrochemically controlling the degree of their charging, with the goal of clarifying the role of charging in blinking. We find that two distinct types of blinking are possible: conventional (A-type) blinking due to charging and discharging of the nanocrystal core, in which lower photoluminescence intensities correlate with shorter photoluminescence lifetimes; and a second sort (B-type), in which large changes in the emission intensity are not accompanied by significant changes in emission dynamics. We attribute B-type blinking to charge fluctuations in the electron-accepting surface sites. When unoccupied, these sites intercept 'hot' electrons before they relax into emitting core states. Both blinking mechanisms can be electrochemically controlled and completely suppressed by application of an appropriate potential.


Assuntos
Luminescência , Pontos Quânticos , Técnicas Eletroquímicas
8.
Philos Trans A Math Phys Eng Sci ; 369(1950): 3483-96, 2011 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-21807723

RESUMO

Certain metal nanoparticles exhibit the effect of localized surface plasmon resonance when interacting with light, based on collective oscillations of their conduction electrons. The interaction of this effect with molecules is of great interest for a variety of research disciplines, both in optics and in the life sciences. This paper attempts to describe and structure this emerging field of molecular plasmonics, situated between the molecular world and plasmonic effects in metal nanostructures, and demonstrates the potential of these developments for a variety of applications.


Assuntos
Materiais Biocompatíveis/química , Ouro/química , Nanopartículas Metálicas/química , Ressonância de Plasmônio de Superfície/métodos
9.
Proc SPIE Int Soc Opt Eng ; 7909: 79090N, 2011 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-21808662

RESUMO

Quantum dots (QDs) are semiconductor nanocrystals with extensive imaging and diagnostic capabilities, including the potential for single molecule tracking. Commercially available QDs offer distinct advantages over organic fluorophores, such as increased photostability and tunable emission spectra, but their cadmium selenide (CdSe) core raises toxicity concerns. For this reason, replacements for CdSe-based QDs have been sought that can offer equivalent optical properties. The spectral range, brightness and stability of InP QDs may comprise such a solution. To this end, LANL/CINT personnel fabricated moderately thick-shell novel InP QDs that retain brightness and emission over time in an aqueous environment. We are interested in evaluating how the composition and surface properties of these novel QDs affect their entry and sequestration within the cell. Here we use epifluorescence and transmission electron microscopy (TEM) to evaluate the structural properties of cultured Xenopus kidney cells (A6; ATCC) that were exposed either to commercially available CdSe QDs (Qtracker® 565, Invitrogen) or to heterostructured InP QDs (LANL). Epifluorescence imaging permitted assessment of the general morphology of cells labeled with fluorescent molecular probes (Alexa Fluor® ® phalloidin; Hoechst 33342), and the prevalence of QD association with cells. In contrast, TEM offered unique advantages for viewing electron dense QDs at higher resolution with regard to subcellular sequestration and compartmentalization. Preliminary results show that in the absence of targeting moieties, InP QDs (200 nM) can passively enter cells and sequester nonspecifically in cytosolic regions whereas commercially available targeted QDs principally associate with membranous structures within the cell. Supported by: NIH 5R01GM084702.

10.
Anal Bioanal Chem ; 401(4): 1241-9, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21739351

RESUMO

The sensitivities of five different core-shell nanostructures were investigated towards changes in the refractive index of the surrounding medium. The shift of the localized surface plasmon resonance (LSPR) maximum served as a measure of the (respective) sensitivity. Thus, gold-silver core-shell nanoparticles (NPs) were prepared with different shell thicknesses in a two-step chemical process without the use of any (possibly disturbing) surfactants. The measurements were supported by ultramicroscopic images in order to size the resulting core-shell structures. When compared to sensitivities of nanostructures reported in the literature with those of the (roughly spherical) gold-silver core-shell NPs, the latter showed comparable (or even higher) sensitivities than gold nanorods. The experimental finding is supported by theoretical calculation of optical properties of such core-shell NP. Extinction spectra of ideal spherical and deformed core-shell NPs with various core/shell sizes were calculated, and the presence of an optimal silver shell thickness with increased sensitivity was confirmed. This effect is explained by the existence of two overlapping plasmon bands in the NP, which change their relative intensity upon change of refractive index. Results of this research show a possibility of improving LSPR sensor by adding an extra metallic layer of certain thickness.

11.
Expert Opin Med Diagn ; 2(7): 813-28, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23495820

RESUMO

BACKGROUND: Chip-based bioanalytical methods represent a promising approach for a highly parallel and robust analysis with minimal sample volumes. Key process parameters that can be decisive for certain applications are determined by the detection scheme utilized. OBJECTIVE: This review addresses typical requirements of chip-based detection systems, especially for the emerging field of point-of-care diagnostics that make possible field detection with less-trained personnel, robust assays as well as low instrumentation costs. METHODS: The use of metal nanoparticles as labels represents a promising approach. They exhibit a high stability in signal and new detection schemes that would allow for robustness and low-cost readout. RESULTS/CONCLUSION: First examples of this kind have been established and are in the market, and more are in the development pipeline.

12.
Nano Lett ; 7(2): 247-53, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17249738

RESUMO

An optical technique for the parallel manipulation of nanoscale structures with molecular resolution is presented. Bioconjugated metal nanoparticles are thereby positioned at the location of interest, such as, e.g., certain DNA sequences along metaphase chromosomes, prior to pulsed laser light irradiation of the whole sample. The nanoparticles are designed to absorb the introduced energy highly efficiently, in that way acting as nanoantenna. As result of the interaction, structural changes of the sample with subwavelength dimensions and nanoscale precision are observed at the location of the particles. The process leading to the nanolocalized destruction is caused by particle ablation as well as thermal damage of the surrounding material.


Assuntos
DNA/genética , DNA/efeitos da radiação , Lasers , Nanotecnologia/métodos , Cromossomos/genética , Cromossomos/efeitos da radiação , Cromossomos/ultraestrutura , Humanos , Técnicas In Vitro , Metais , Microscopia de Força Atômica , Nanopartículas , Óptica e Fotônica , Ressonância de Plasmônio de Superfície
13.
J Fluoresc ; 15(2): 161-70, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15883771

RESUMO

DNA microarrays are promising tools for fast and highly parallel DNA detection by means of fluorescence or gold nanoparticle labeling. However, substrate modification with silanes (as a prerequisite for capture DNA binding) often leads to inhomogeneous surfaces and/or nonspecific binding of the labeled DNA. We examined both different substrate cleaning and activating protocols and also different blocking strategies for optimizing the procedures, especially those for nanoparticle labeling. Contact angle measurements as well as fluorescence microscopy, atomic force microscopy (AFM), and a flatbed scanner were used to analyze the multiple-step process. Although the examined different cleaning and activating protocols resulted in considerably different contact angles, meaning different substrate wettability, silanization led to similar hydrophobic surfaces which could be revealed as smooth surfaces of about 2-4 nm roughness. The two examined silanes (3-glycidoxypropyltrimethoxysilane (GOPS) and 3-aminopropyltriethoxysilane (APTES)) differed in their DNA binding homogeneity, maximum signal intensities, and sensitivity. Nonspecific gold binding on APTES/PDC surfaces could be blocked by treatment in 3% bovine serum albumin (BSA).


Assuntos
DNA/análise , Ouro/química , Análise de Sequência com Séries de Oligonucleotídeos , Sequência de Bases , Primers do DNA , Microscopia de Força Atômica , Microscopia de Fluorescência , Hibridização de Ácido Nucleico , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...