Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Behav Brain Res ; 257: 8-12, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24070857

RESUMO

Brain-derived neurotrophic factor (BDNF) is a crucial regulator of neuronal survival and neuroplasticity in the central nervous system (CNS). As a result, there has been a growing interest in the role of BDNF in neuropsychiatric disorders associated with neurodegeneration, including depression and dementia. However, until now, BDNF-targeting therapies have yielded disappointing results. BDNF is thought to exert its beneficial effects on synaptic and neuronal plasticity mainly through binding to the tyrosine kinase B (TrkB) receptor. Recently, 7,8-dihydroxyflavone (7,8-DHF) was identified as the first selective TrkB agonist. In the present study the effect of 7,8-DHF on memory consolidation processes was evaluated. In healthy rats, 7,8-DHF improved object memory formation in the object recognition task when administered both immediately and 3h after learning. In a transgenic mouse model of Alzheimer's disease, i.e. APPswe/PS1dE9 mice, spatial memory as measured in the object location task was improved after administration of 7,8-DHF. A similar memory improvement was found when their wild-type littermates were treated with 7,8-DHF. The acute beneficial effects in healthy mice suggest that effects might be symptomatic rather than curing. Nevertheless, this study suggests that 7,8-DHF might be a promising therapeutic target for dementia.


Assuntos
Flavanonas/uso terapêutico , Transtornos da Memória/tratamento farmacológico , Receptor trkB/agonistas , Doença de Alzheimer/complicações , Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Animais , Modelos Animais de Doenças , Comportamento Exploratório/efeitos dos fármacos , Humanos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Transtornos da Memória/etiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação/genética , Presenilina-1/genética , Ratos , Ratos Wistar , Reconhecimento Psicológico/efeitos dos fármacos
2.
J Chem Neuroanat ; 46(1-2): 1-9, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23022956

RESUMO

Vagus nerve stimulation (VNS) is a moderately effective treatment for intractable epilepsy. However, the mechanism of action is poorly understood. The effect of left VNS in amygdala kindled rats was investigated by studying changes in nNOS and ΔFos B expression in primary and secondary vagus nerve projection nuclei: the nucleus of the solitary tract (NTS), dorsal motor nucleus of the vagus nerve (DMV), parabrachial nucleus (PBN) and locus coeruleus (LC). Rats were fully kindled by stimulation of the amygdala. Subsequently, when the fully kindled state was reached and then maintained for ten days, rats received a single 3-min train of VNS starting 1min prior to the kindling stimulus and lasting for 2min afterwards. In control animals the vagus nerve was not stimulated. Animals were sacrificed 48h later. The brainstems were stained for neuronal nitric oxide synthase (nNOS) and ΔFos B. VNS decreased seizure duration with more than 25% in 21% of rats. No VNS associated changes in nNOS immunoreactivity were observed in the NTS and no changes in ΔFos B were observed in the NTS, PBN, or LC. High nNOS immunopositive cell densities of >300cells/mm(2) were significantly more frequent in the left DMV than in the right (χ(2)(1)=26.2, p<0.01), independent of whether the vagus nerve was stimulated. We conclude that the observed nNOS immunoreactivity in the DMV suggests surgery-induced axonal damage. A 3-min train of VNS in fully kindled rats does not affect ΔFos B expression in primary and secondary projection nuclei of the vagus nerve.


Assuntos
Tronco Encefálico/metabolismo , Modelos Animais de Doenças , Óxido Nítrico Sintase Tipo I/biossíntese , Proteínas Proto-Oncogênicas c-fos/biossíntese , Convulsões/metabolismo , Estimulação do Nervo Vago/métodos , Animais , Masculino , Ratos , Ratos Sprague-Dawley , Convulsões/terapia , Nervo Vago/metabolismo
3.
Neuroscience ; 186: 135-45, 2011 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-21515342

RESUMO

High-frequency stimulation (HFS) of the subthalamic nucleus (STN) is an established neurosurgical therapy for movement disability in advanced Parkinson's disease (PD), but some patients experience psychiatric side-effects like depression. In a previous electrophysiological study, we observed that HFS of the STN inhibited a population of neurones in the rat dorsal raphe nucleus (DRN), with firing properties characteristic of 5-HT neurones. The present study extended these findings to a second population of neurones, and combined extracellular recording with juxtacellular-labelling to investigate the chemical identity of the neurones affected by HFS. Bilateral HFS (130 Hz, 100-200 µA, 5 min) of the STN inhibited (26.0±2.9%) the firing of 37/74 DRN neurones displaying a slow, regular firing pattern. Slower firing neurones were more strongly inhibited than those firing faster. Importantly, 10 inhibited DRN neurones were juxtacellular-labelled with neurobiotin, and all neurones contained 5-HT as shown by post-mortem 5-HT immunocytochemistry. A minority of slow firing DRN neurones (18/74) were activated by STN HFS (37.9±8.3%) which was not observed previously. Of these neurones, three were juxtacellular-labelled and one was 5-HT immunopositive. Also a small number of DRN neurones (19/74) did not respond to HFS, four of which were juxtacellular-labelled and all contained 5-HT. These data show that individual chemically-identified 5-HT-containing neurones in the DRN were modulated by STN HFS, and that the majority were inhibited but some were activated and some failed to respond. These data extend previous findings of modulation of the 5-HT system by STN HFS but suggest a destabilisation of the 5-HT system rather than simple inhibition as indicated previously. Although the mechanism is not yet known, such changes may contribute to the psychiatric side-effects of STN stimulation in some PD patients.


Assuntos
Potenciais de Ação/fisiologia , Terapia por Estimulação Elétrica/efeitos adversos , Inibição Neural/fisiologia , Núcleos da Rafe/fisiopatologia , Serotonina/fisiologia , Núcleo Subtalâmico/fisiologia , Animais , Terapia por Estimulação Elétrica/métodos , Masculino , Mesencéfalo/citologia , Mesencéfalo/fisiopatologia , Núcleos da Rafe/citologia , Ratos , Ratos Sprague-Dawley , Núcleo Subtalâmico/citologia
4.
Eur J Neurosci ; 2(10): 845-862, 1990.
Artigo em Inglês | MEDLINE | ID: mdl-12106092

RESUMO

In this study we describe the localization of formaldehyde-fixed cGMP-immunoreactivity (cGMP-IR) in rat cerebellar tissue slices incubated in vitro. In the absence of phosphodiesterase inhibition, cGMP-immunofluorescence was of low intensity in tissue slices prepared from immature cerebella. Addition of isobutylmethylxanthine (IBMX) to the incubation medium resulted in the appearance of cGMP-IR in clusters of astrocytes in the internal granular layer. Addition of N-methyl-d-aspartate (NMDA), kainic acid, atrial natriuretic factor (ANF), or sodium nitroprusside (SNP) gave an intense cGMP-IR in Bergmann fibres, Bergmann cell bodies, and astrocytes in the internal granular layer. Astrocytes in the white matter showed cGMP-IR after incubation of the slice in the presence of ANF or nitroprusside, but not after NMDA or kainic acid. In addition, after SNP stimulation of cGMP production, cGMP-IR was found in fibres which were not positive for glial fibrillary acidic protein (GFAP). In the adult cerebellar slice, intense basal cGMP-immunostaining was observed in Bergmann fibres, Bergmann cell bodies, and astrocytes in the granular layer. No cGMP-IR was observed in Purkinje cells. Stimulation of the cGMP-content in the glial structures by NMDA, ANF, or SNP, was suggested by the immunocytochemical results. However, when measured biochemically, only the effect of SNP was statistically significant, and immunocytochemistry showed that SNP clearly stimulated cGMP synthesis in neuronal cell structures. In the cerebellum of the aged rat a reduced cGMP-IR was found compared to the adult, in the same structures which showed cGMP-IR in the adult. Basal cGMP-immunostaining was reduced in the presence of haemoglobin, methylene blue, by inhibiting nitric oxide synthesis with NG-monomethyl-l-arginine (NGMAr), or by depletion of external Ca2+. Also the stimulatory effect of NMDA and of ANF (partly) on the cGMP-IR was inhibited by these compounds. cGMP-IR after stimulation of guanylate cyclase by SNP was reduced by the concomitant presence of haemoglobin or methylene blue, but not by NGMAr, or by omission of Ca2+. Our results point to an important role for cGMP in the functioning of glial tissue in the cerebellum and also suggest a role for nitric oxide as an intercellular mediator in the functioning of glutamate and ANF in the cerebellum.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...