Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Comp Neurol ; 532(4): e25611, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38625816

RESUMO

A core component of the avian pallial cognitive network is the multimodal nidopallium caudolaterale (NCL) that is considered to be analogous to the mammalian prefrontal cortex (PFC). The NCL plays a key role in a multitude of executive tasks such as working memory, decision-making during navigation, and extinction learning in complex learning environments. Like the PFC, the NCL is positioned at the transition from ascending sensory to descending motor systems. For the latter, it sends descending premotor projections to the intermediate arcopallium (AI) and the medial striatum (MSt). To gain detailed insight into the organization of these projections, we conducted several retrograde and anterograde tracing experiments. First, we tested whether NCL neurons projecting to AI (NCLarco neurons) and MSt (NCLMSt neurons) are constituted by a single neuronal population with bifurcating neurons, or whether they form two distinct populations. Here, we found two distinct projection patterns to both target areas that were associated with different morphologies. Second, we revealed a weak topographic projection toward the medial and lateral striatum and a strong topographic projection toward AI with clearly distinguishable sensory termination fields. Third, we investigated the relationship between the descending NCL pathways to the arcopallium with those from the hyperpallium apicale, which harbors a second major descending pathway of the avian pallium. We embed our findings within a system of parallel pallio-motor loops that carry information from separate sensory modalities to different subpallial systems. Our results also provide insights into the evolution of the avian motor system from which, possibly, the song system has emerged.


Assuntos
Encéfalo , Columbidae , Animais , Columbidae/fisiologia , Córtex Cerebral/fisiologia , Corpo Estriado , Neostriado/fisiologia , Mamíferos
2.
Sci Rep ; 10(1): 15971, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32994413

RESUMO

Pigeons can successfully discriminate between sets of Picasso and Monet paintings. We recorded from three pallial brain areas: the nidopallium caudolaterale (NCL), an analogue of mammalian prefrontal cortex; the entopallium (ENTO), an intermediary visual area similar to primate extrastriate cortex; and the mesopallium ventrolaterale (MVL), a higher-order visual area similar to primate higher-order extrastriate cortex, while pigeons performed an S+/S- Picasso versus Monet discrimination task. In NCL, we found that activity reflected reward-driven categorisation, with a strong left-hemisphere dominance. In ENTO, we found that activity reflected stimulus-driven categorisation, also with a strong left-hemisphere dominance. Finally, in MVL, we found that activity reflected stimulus-driven categorisation, but no hemispheric differences were apparent. We argue that while NCL and ENTO primarily use reward and stimulus information, respectively, to discriminate Picasso and Monet paintings, both areas are also capable of integrating the other type of information during categorisation. We also argue that MVL functions similarly to ENTO in that it uses stimulus information to discriminate paintings, although not in an identical way. The current study adds some preliminary evidence to previous literature which emphasises visual lateralisation during discrimination learning in pigeons.


Assuntos
Columbidae/fisiologia , Pinturas/classificação , Córtex Pré-Frontal/fisiologia , Córtex Visual/fisiologia , Animais , Comportamento Animal , Mapeamento Encefálico , Lateralidade Funcional , Estimulação Luminosa , Recompensa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...