Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 901: 166005, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-37541501

RESUMO

This study analyzes the technical performance, costs and life-cycle greenhouse gas (GHG) emissions of the production of various fuels using air-captured water and CO2, and concentrated solar energy as the source of high-temperature process heat. The solar thermochemical fuel production pathway utilizes a ceria-based redox cycle for splitting water and CO2 to syngas - a tailored mixture of H2 and CO - which in turn is further converted to liquid hydrocarbon fuels. The cycle is driven by concentrated solar heat and supplemented by a high-temperature thermal energy storage for round-the-clock continuous operation. The study examines three locations with high direct normal irradiation using a baseline heliostat field reflective area of 1 km2 for the production of six fuels, i.e. jet fuel and diesel via Fischer-Tropsch, methanol, gasoline via methanol, dimethyl ether, and hydrogen. Two scenarios are considered: near-term future by the year 2030 and long-term future beyond 2030. In the near-term future in Sierra Gorda (Chile), the minimum fuel selling price is estimated at around 76 €/GJ (2.5 €/L) for jet fuel and diesel, 65 €/GJ for methanol, gasoline (via methanol) and dimethyl ether (DME), and 42 €/GJ for hydrogen (excluding liquefaction). In the long-term future, with advancements in solar receiver, redox reactor, high-temperature heat recovery and direct air capture technologies, the industrial-scale plant could achieve a solar-to-fuel efficiency up to 13-19 %, depending on the target fuel, resulting in a minimum fuel selling price of 16-38 €/GJ (0.6-1.3 €/L) for jet fuel and diesel, and 14-32 €/GJ for methanol, gasoline, and DME, making these fuels synthesized from sunlight and air cost-competitive vis-à-vis e-fuels. To produce the same fuels in Tabernas (Spain) and Ouarzazate (Morocco) as in Sierra Gorda, the production cost would increase by 22-33 %. Greenhouse gas savings can be over 80 % already in the near-term future.

2.
Joule ; 6(7): 1606-1616, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35915707

RESUMO

Developing solar technologies for producing carbon-neutral aviation fuels has become a global energy challenge, but their readiness level has largely been limited to laboratory-scale studies. Here, we report on the experimental demonstration of a fully integrated thermochemical production chain from H2O and CO2 to kerosene using concentrated solar energy in a solar tower configuration. The co-splitting of H2O and CO2 was performed via a ceria-based thermochemical redox cycle to produce a tailored mixture of H2 and CO (syngas) with full selectivity, which was further processed to kerosene. The 50-kW solar reactor consisted of a cavity-receiver containing a reticulated porous structure directly exposed to a mean solar flux concentration of 2,500 suns. A solar-to-syngas energy conversion efficiency of 4.1% was achieved without applying heat recovery. This solar tower fuel plant was operated with a setup relevant to industrial implementation, setting a technological milestone toward the production of sustainable aviation fuels.

3.
Nature ; 601(7891): 63-68, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34732875

RESUMO

Aviation and shipping currently contribute approximately 8% of total anthropogenic CO2 emissions, with growth in tourism and global trade projected to increase this contribution further1-3. Carbon-neutral transportation is feasible with electric motors powered by rechargeable batteries, but is challenging, if not impossible, for long-haul commercial travel, particularly air travel4. A promising solution are drop-in fuels (synthetic alternatives for petroleum-derived liquid hydrocarbon fuels such as kerosene, gasoline or diesel) made from H2O and CO2 by solar-driven processes5-7. Among the many possible approaches, the thermochemical path using concentrated solar radiation as the source of high-temperature process heat offers potentially high production rates and efficiencies8, and can deliver truly carbon-neutral fuels if the required CO2 is obtained directly from atmospheric air9. If H2O is also extracted from air10, feedstock sourcing and fuel production can be colocated in desert regions with high solar irradiation and limited access to water resources. While individual steps of such a scheme have been implemented, here we demonstrate the operation of the entire thermochemical solar fuel production chain, from H2O and CO2 captured directly from ambient air to the synthesis of drop-in transportation fuels (for example, methanol and kerosene), with a modular 5 kWthermal pilot-scale solar system operated under field conditions. We further identify the research and development efforts and discuss the economic viability and policies required to bring these solar fuels to market.

5.
Ind Eng Chem Res ; 56(37): 10300-10308, 2017 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-28966440

RESUMO

We report on the experimental performance of a solar aerosol reactor for carrying out the combined thermochemical reduction of CeO2 and reforming of CH4 using concentrated radiation as the source of process heat. The 2 kWth solar reactor prototype utilizes a cavity receiver enclosing a vertical Al2O3 tube which contains a downward gravity-driven particle flow of ceria particles, either co-current or counter-current to a CH4 flow. Experimentation under a peak radiative flux of 2264 suns yielded methane conversions up to 89% at 1300 °C for residence times under 1 s. The maximum extent of ceria reduction, given by the nonstoichiometry δ (CeO2-δ), was 0.25. The solar-to-fuel energy conversion efficiency reached 12%. The syngas produced had a H2:CO molar ratio of 2, and its calorific value was solar-upgraded by 24% over that of the CH4 reformed.

6.
Joule ; 1(1): 146-154, 2017 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-29034368

RESUMO

Splitting CO2 with a thermochemical redox cycle utilizes the entire solar spectrum and provides a favorable path to the synthesis of solar fuels at high rates and efficiencies. However, the temperature/pressure swing commonly applied between reduction and oxidation steps incurs irreversible energy losses and severe material stresses. Here, we experimentally demonstrate for the first time the single-step continuous splitting of CO2 into separate streams of CO and O2 under steady-state isothermal/isobaric conditions. This is accomplished using a solar-driven ceria membrane reactor conducting oxygen ions, electrons, and vacancies induced by the oxygen chemical potential gradient. Guided by the limitations imposed by thermodynamic equilibrium of CO2 thermolysis, we operated the solar reactor at 1,600°C, 3·10-6 bar [Formula: see text] and 3,500 suns radiation, yielding total selectivity of CO2 to CO + ½O2 with a conversion rate of 0.024 µmol·s-1 per cm2 membrane. The dynamics of the oxygen vacancy exchange, tracked by GC and XPS, further validated stable fuel production.

7.
Appl Opt ; 56(11): 3035-3052, 2017 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-28414361

RESUMO

We introduce a design methodology for nonimaging, single-reflection mirrors with polygonal inlet apertures that generate a uniform irradiance distribution on a polygonal outlet aperture, enabling a multitude of applications within the domain of concentrated photovoltaics. Notably, we present single-mirror concentrators of square and hexagonal perimeter that achieve very high irradiance uniformity on a square receiver at concentrations ranging from 100 to 1000 suns. These optical designs can be assembled in compound concentrators with maximized active area fraction by leveraging tessellation. More advanced multi-mirror concentrators, where each mirror individually illuminates the whole area of the receiver, allow for improved performance while permitting greater flexibility for the concentrator shape and robustness against partial shading of the inlet aperture.

8.
J Mater Chem A Mater ; 5(29): 15105-15115, 2017 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-29456856

RESUMO

Perovskites are attractive redox materials for thermo/electrochemical fuel synthesis. To design perovskites with balanced redox energetics for thermochemically splitting CO2, the activity of lattice oxygen vacancies and stability against crystal phase changes and detrimental carbonate formation are predicted for a representative range of perovskites by electronic structure computations. Systematic trends in these materials properties when doping with selected metal cations are described in the free energy range defined for isothermal and temperature-swing redox cycles. To confirm that the predicted materials properties root in the bulk chemical composition, selected perovskites are synthesized and characterized by X-ray diffraction, transmission electron microscopy, and thermogravimetric analysis. On one hand, due to the oxidation equilibrium, none of the investigated compositions outperforms non-stoichiometric ceria - the benchmark redox material for CO2 splitting with temperature-swings in the range of 800-1500 °C. On the other hand, certain promising perovskites remain redox-active at relatively low oxide reduction temperatures at which ceria is redox-inactive. This trade-off in the redox energetics is established for YFeO3, YCo0.5Fe0.5O3 and LaFe0.5Ni0.5O3, identified as stable against phase changes and capable to convert CO2 to CO at 600 °C and 10 mbar CO in CO2, and to being decomposed at 1400 °C and 0.1 mbar O2 with an enthalpy change of 440-630 kJ mol-1 O2.

9.
Sci Bull (Beijing) ; 62(16): 1099-1101, 2017 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36659337
10.
Ind Eng Chem Res ; 55(40): 10618-10625, 2016 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-27853339

RESUMO

We report on the experimental demonstration of an aerosol solar reactor for the thermal reduction of ceria, as part of a thermochemical redox cycle for splitting H2O and CO2. The concept utilizes a cavity-receiver enclosing an array of alumina tubes, each containing a downward gravity-driven aerosol flow of ceria particles countercurrent to an inert sweep gas flow for intrinsic separation of reduced ceria and oxygen. A 2 kWth lab-scale prototype with a single tube was tested under radiative fluxes approaching 4000 suns, yielding reaction extents of up to 53% of the thermodynamic equilibrium at 1919 K within residence times below 1 s. Upon thermal redox cycling, fresh primary particles of 2.44 µm mean size initially formed large agglomerates of 1000 µm mean size, then sintered into stable particles of 150 µm mean size. The reaction extent was primarily limited by heat transfer for large particles/agglomerates (mean size > 200 µm) and by the gas phase advection of product O2 for smaller particles.

11.
Data Brief ; 6: 184-8, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26862556

RESUMO

The spectral specular reflectance of conventional and novel reflective materials for solar concentrators is measured with an acceptance angle of 17.5 mrad over the wavelength range 300-2500 nm at incidence angles 15-60° using a spectroscopic goniometry system. The same experimental setup is used to determine the spectral narrow-angle transmittance of semi-transparent materials for solar collector covers at incidence angles 0-60°. In addition, the angle-resolved surface scattering of reflective materials is recorded by an area-scan CCD detector over the spectral range 350-1050 nm. A comprehensive summary, discussion, and interpretation of the results are included in the associated research article "Spectral reflectance, transmittance, and angular scattering of materials for solar concentrators" in Solar Energy Materials and Solar Cells.

12.
J Phys Chem C Nanomater Interfaces ; 119(29): 16452-16461, 2015 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-26693270

RESUMO

The kinetics of CO2 reduction over nonstoichimetric ceria, CeO2-δ, a material of high potential for thermochemical conversion of sunlight to fuel, has been investigated for a wide range of nonstoichiometries (0.02 ≤ δ ≤ 0.25), temperatures (693 ≤ T ≤ 1273 K), and CO2 concentrations (0.005 ≤ pCO2 ≤ 0.4 atm). Samples were reduced thermally at 1773 K to probe low nonstoichiometries (δ < 0.05) and chemically at lower temperatures in a H2 atmosphere to prevent particle sintering and probe the effect of higher nonstoichiometries (δ < 0.25). For extents greater than δ = 0.2, oxidation rates at a given nonstoichiometry are hindered for the duration of the reaction, presumably because of near-order changes, such as lattice compression, as confirmed via Raman Spectroscopy. Importantly, this behavior is reversible and oxidation rates are not affected at lower δ. Following thermal reduction at very low δ, however, oxidation rates are an order of magnitude slower than those of chemically reduced samples, and rates monotonically increase with the initial nonstoichiometry (up to δ = 0.05). This dependence may be attributed to the formation of stable defect complexes formed between oxygen vacancies and polarons. When the same experiments are performed with 10 mol % Gd3+ doped ceria, in which defect complexes are less prevalent than in pure ceria, this dependence is not observed.

13.
Interface Focus ; 5(3): 20140084, 2015 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-26052421

RESUMO

Fixed nitrogen is an essential chemical building block for plant and animal protein, which makes ammonia (NH3) a central component of synthetic fertilizer for the global production of food and biofuels. A global project on artificial photosynthesis may foster the development of production technologies for renewable NH3 fertilizer, hydrogen carrier and combustion fuel. This article presents an alternative path for the production of NH3 from nitrogen, water and solar energy. The process is based on a thermochemical redox cycle driven by concentrated solar process heat at 700-1200°C that yields NH3 via the oxidation of a metal nitride with water. The metal nitride is recycled via solar-driven reduction of the oxidized redox material with nitrogen at atmospheric pressure. We employ electronic structure theory for the rational high-throughput design of novel metal nitride redox materials and to show how transition-metal doping controls the formation and consumption of nitrogen vacancies in metal nitrides. We confirm experimentally that iron doping of manganese nitride increases the concentration of nitrogen vacancies compared with no doping. The experiments are rationalized through the average energy of the dopant d-states, a descriptor for the theory-based design of advanced metal nitride redox materials to produce sustainable solar thermochemical ammonia.

14.
ChemSusChem ; 8(11): 1966-71, 2015 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-25925955

RESUMO

Separation and concentration of O2 from gas mixtures is central to several sustainable energy technologies, such as solar-driven synthesis of liquid hydrocarbon fuels from CO2 , H2 O, and concentrated sunlight. We introduce a rationale for designing metal oxide redox materials for oxygen separation through "thermochemical pumping" of O2 against a pO2 gradient with low-grade process heat. Electronic structure calculations show that the activity of O vacancies in metal oxides pinpoints the ideal oxygen exchange capacity of perovskites. Thermogravimetric analysis and high-temperature X-ray diffraction for SrCoO3-δ , BaCoO3-δ and BaMnO3-δ perovskites and Ag2 O and Cu2 O references confirm the predicted performance of SrCoO3-δ , which surpasses the performance of state-of-the-art Cu2 O at these conditions with an oxygen exchange capacity of 44 mmol O 2 mol SrCoO 3-δ(-1) exchanged at 12.1 µmol O 2 min(-1) g(-1) at 600-900 K. The redox trends are understood due to lattice expansion and electronic charge transfer.


Assuntos
Compostos de Cálcio/química , Óxidos/química , Oxigênio/química , Oxigênio/isolamento & purificação , Temperatura , Titânio/química , Modelos Moleculares , Conformação Molecular , Pressão
15.
Environ Sci Technol ; 49(5): 3167-74, 2015 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-25629220

RESUMO

Fully polymeric and biobased CO2 sorbents composed of oxidized nanofibrillated cellulose (NFC) and a high molar mass polyethylenimine (PEI) have been prepared via a freeze-drying process. This resulted in NFC/PEI foams displaying a sheet structure with porosity above 97% and specific surface area in the range 2.7-8.3 m(2)·g(-1). Systematic studies on the impact of both PEI content and relative humidity on the CO2 capture capacity of the amine functionalized sorbents have been conducted under atmospheric conditions (moist air with ∼400 ppm of CO2). At 80% RH and an optimum PEI content of 44 wt %, a CO2 capacity of 2.22 mmol·g(-1), a stability over five cycles, and an exceptionally low adsorption half time of 10.6 min were achieved. In the 20-80% RH range studied, the increase in relative humidity increased CO2 capacity of NFC/PEI foams at the expense of a high H2O uptake in the range 3.8-28 mmol·g(-1).


Assuntos
Poluição do Ar/prevenção & controle , Dióxido de Carbono/química , Celulose/análogos & derivados , Nanoestruturas/química , Nanotecnologia/métodos , Polietilenoimina/análogos & derivados , Adsorção , Celulose/química , Liofilização/métodos , Umidade , Polietilenoimina/química , Porosidade , Fatores de Tempo
16.
Chimia (Aarau) ; 69(12): 799-803, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26842333

RESUMO

Combined sensible/latent heat storage allows the heat-transfer fluid outflow temperature during discharging to be stabilized. A lab-scale combined storage consisting of a packed bed of rocks and steel-encapsulated AlSi(12) was investigated experimentally and numerically. Due to the small tank-to-particle diameter ratio of the lab-scale storage, void-fraction variations were not negligible, leading to channeling effects that cannot be resolved in 1D heat-transfer models. The void-fraction variations and channeling effects can be resolved in 2D models of the flow and heat transfer in the storage. The resulting so-called bypass fraction extracted from the 2D model was used in the 1D model and led to good agreement with experimental measurements.

17.
Energy Technol (Weinh) ; 3(7): 784-789, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31218206

RESUMO

The continuous production of carbon monoxide (CO) and hydrogen (H2) by dry reforming of methane (CH4) is demonstrated isothermally using a ceramic redox membrane in absence of additional catalysts. The reactor technology realizes the continuous splitting of CO2 to CO on the inner side of a tubular membrane and the partial oxidation of CH4 with the lattice oxygen to form syngas on the outer side. La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) membranes evaluated at 840-1030 °C yielded up to 1.27 µmol CO s-1 from CO2, 3.77 µmolH2 g-1 s-1 from CH4 , and CO from CH4 at approximately the same rate as CO from CO2. We compute the free energy of the oxygen vacancy formation for La0.5Sr0.5B0.5B'0.5O3-δ (B, B'=Mn, Fe, Co, Cu) using electronic structure theory to understand how CO2 reduction limits dry reforming of methane using LSCF and to show how the CO2 conversion can be increased by using advanced redox materials such as La0.5Sr0.5MnO3-δ and La0.5Sr0.5Mn0.5Co0.5O3-δ .

18.
Appl Opt ; 54(33): 9709-21, 2015 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-26836527

RESUMO

While nonimaging concentrators can approach the thermodynamic limit of concentration, they generally suffer from poor compactness when designed for small acceptance angles, e.g., to capture direct solar irradiation. Symmetric two-stage systems utilizing an image-forming primary parabolic concentrator in tandem with a nonimaging secondary concentrator partially overcome this compactness problem, but their achievable concentration ratio is ultimately limited by the central obstruction caused by the secondary. Significant improvements can be realized by two-stage systems having asymmetric cross-sections, particularly for 2D line-focus trough designs. We therefore present a detailed analysis of two-stage line-focus asymmetric concentrators for flat receiver geometries and compare them to their symmetric counterparts. Exemplary designs are examined in terms of the key optical performance metrics, namely, geometric concentration ratio, acceptance angle, concentration-acceptance product, aspect ratio, active area fraction, and average number of reflections. Notably, we show that asymmetric designs can achieve significantly higher overall concentrations and are always more compact than symmetric systems designed for the same concentration ratio. Using this analysis as a basis, we develop novel asymmetric designs, including two-wing and nested configurations, which surpass the optical performance of two-mirror aplanats and are comparable with the best reported 2D simultaneous multiple surface designs for both hollow and dielectric-filled secondaries.

19.
Adv Energy Mater ; 5(7): 1401082, 2015 04.
Artigo em Inglês | MEDLINE | ID: mdl-26855639

RESUMO

The performance of metal oxides as redox materials is limited by their oxygen conductivity and thermochemical stability. Predicting these properties from the electronic structure can support the screening of advanced metal oxides and accelerate their development for clean energy applications. Specifically, reducible metal oxide catalysts and potential redox materials for the solar-thermochemical splitting of CO2 and H2O via an isothermal redox cycle are examined. A volcano-type correlation is developed from available experimental data and density functional theory. It is found that the energy of the oxygen-vacancy formation at the most stable surfaces of TiO2, Ti2O3, Cu2O, ZnO, ZrO2, MoO3, Ag2O, CeO2, yttria-stabilized zirconia, and three perovskites scales with the Gibbs free energy of formation of the bulk oxides. Analogously, the experimental oxygen self-diffusion constants correlate with the transition-state energy of oxygen conduction. A simple descriptor is derived for rapid screening of oxygen-diffusion trends across a large set of metal oxide compositions. These general trends are rationalized with the electronic charge localized at the lattice oxygen and can be utilized to predict the surface activity, the free energy of complex bulk metal oxides, and their oxygen conductivity.

20.
Opt Lett ; 39(15): 4301-4, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25078162

RESUMO

We consider the limit of geometric concentration for a focusing concave mirror, e.g., a parabolic trough or dish, designed to collect all radiation within a finite acceptance angle and direct it to a receiver with a flat or circular cross-section. While a concentrator with a parabolic cross-section indeed achieves this limit, it is not the only geometry capable of doing so. We demonstrate that there are infinitely many solutions. The significance of this finding is that geometries which can be more easily constructed than the parabola can be utilized without loss of concentration, thus presenting new avenues for reducing the cost of solar collectors. In particular, we investigate a low-cost trough mirror profile which can be constructed by inflating a stack of thin polymer membranes and show how it can always be designed to match the geometric concentration of a parabola of similar form.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...