Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 29(32): e202300267, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37104865

RESUMO

A series of stereogenic-at-metal iron complexes comprising a non-C2 -symmetric chiral topology is introduced and applied to asymmetric 3d-transition metal catalysis. The chiral iron(II) complexes are built from chiral tetradentate N4-ligands containing a proline-derived amino pyrrolidinyl backbone which controls the relative (cis-α coordination) and absolute metal-centered configuration (Λ vs. Δ). Two chloride ligands complement the octahedral coordination sphere. The modular composition of the tetradentate ligands facilitates the straightforward incorporation of different terminal coordinating heteroaromatic groups into the scaffold. The influence of various combinations was evaluated in an asymmetric ring contraction of isoxazoles to 2H-azirines revealing that a decrease of symmetry is beneficial for the stereoinduction to obtain chiral products in up to 99 % yield and with up to 92 % ee. Conveniently, iron catalysis is feasible under open flask conditions with the bench-stable dichloro complexes exhibiting high robustness towards oxidative or hydrolytic decomposition. The versatility of non-racemic 2H-azirines was subsequently showcased with the conversion into a variety of quaternary α-amino acid derivatives.


Assuntos
Complexos de Coordenação , Modelos Moleculares , Ligantes , Complexos de Coordenação/química , Ferro , Catálise , Compostos Ferrosos
2.
Chem Rev ; 123(8): 4764-4794, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-36988612

RESUMO

Chiral transition metal catalysts represent a powerful and economic tool for implementing stereocenters in organic synthesis, with the metal center providing a strong chemical activation upon its interaction with substrates or reagents, while the overall chirality of the metal complex achieves the desired stereoselectivity. Often, the overall chiral topology of the metal complex implements a stereogenic metal center, which is then involved in the origin of the asymmetric induction. This review provides a comprehensive survey of reported chiral transition metal catalysts in which the metal formally constitutes a stereocenter. A stereogenic metal center goes along with an overall chiral topology of the metal complex, regardless of whether the ligands are chiral or achiral. Implications for the catalyst design and mechanism of asymmetric induction are discussed for half-sandwich, tetracoordinated, pentacoordinated, and hexacoordinated chiral transition metal complexes containing a stereogenic metal center. The review distinguishes between chiral metal catalysts originating from the coordination to chiral ligands and those which are solely composed of optically inactive ligands (achiral or rapidly interconverting enantiomers) prior to complexation (dubbed "chiral-at-metal" catalysts).

3.
Chem Sci ; 12(28): 9673-9681, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34349938

RESUMO

The mechanism of [2 + 2] cycloadditions activated by visible light and catalyzed by bis-cyclometalated Rh(iii) and Ir(iii) photocatalysts was investigated, combining density functional theory calculations and spectroscopic techniques. Experimental observations show that the Rh-based photocatalyst produces excellent yield and enantioselectivity whereas the Ir-photocatalyst yields racemates. Two different mechanistic features were found to compete with each other, namely the direct photoactivation of the catalyst-substrate complex and outer-sphere triplet energy transfer. Our integrated analysis suggests that the direct photocatalysis is the inner working of the Rh-catalyzed reaction, whereas the Ir catalyst serves as a triplet sensitizer that activates cycloaddition via an outer-sphere triplet excited state energy transfer mechanism.

4.
Molecules ; 26(7)2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33804954

RESUMO

A new class of bis-cyclometalated iridium(III) catalysts containing two inert cyclometalated 6-tert-butyl-2-phenyl-2H-indazole bidentate ligands or two inert cyclometalated 5-tert-butyl-1-methyl-2-phenylbenzimidazoles is introduced. The coordination sphere is complemented by two labile acetonitriles, and a hexafluorophosphate ion serves as a counterion for the monocationic complexes. Single enantiomers of the chiral-at-iridium complexes (>99% er) are obtained through a chiral-auxiliary-mediated approach using a monofluorinated salicyloxazoline and are investigated as catalysts in the enantioselective conjugate addition of indole to an α,ß-unsaturated 2-acyl imidazole and an asymmetric Nazarov cyclization.

5.
Chemistry ; 25(67): 15333-15340, 2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-31541505

RESUMO

A new class of bis-cyclometalated rhodium(III) catalysts containing two inert cyclometalated 6-tert-butyl-2-phenyl-2H-indazole ligands and two labile acetonitriles is introduced. Single enantiomers (>99 % ee) were obtained through a chiral-auxiliary-mediated approach using a monofluorinated salicyloxazoline. The new chiral-at-metal complex is capable of catalyzing the visible-light-induced enantioselective α-cyanoalkylation of 2-acyl imidazoles in which it serves a dual function as the chiral Lewis acid catalyst for the asymmetric radical chemistry and at the same time as the photoredox catalyst for the visible-light-induced redox chemistry (up to 80 % yield, 4:1 d.r., and 95 % ee, 12 examples).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA