Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Behav Immun ; 110: 125-139, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36863493

RESUMO

Neuroimmune pathways regulate brain function to influence complex behavior and play a role in several neuropsychiatric diseases, including alcohol use disorder (AUD). In particular, the interleukin-1 (IL-1) system has emerged as a key regulator of the brain's response to ethanol (alcohol). Here we investigated the mechanisms underlying ethanol-induced neuroadaptation of IL-1ß signaling at GABAergic synapses in the prelimbic region of the medial prefrontal cortex (mPFC), an area responsible for integrating contextual information to mediate conflicting motivational drives. We exposed C57BL/6J male mice to the chronic intermittent ethanol vapor-2 bottle choice paradigm (CIE-2BC) to induce ethanol dependence, and conducted ex vivo electrophysiology and molecular analyses. We found that the IL-1 system regulates basal mPFC function through its actions at inhibitory synapses on prelimbic layer 2/3 pyramidal neurons. IL-1ß can selectively recruit either neuroprotective (PI3K/Akt) or pro-inflammatory (MyD88/p38 MAPK) mechanisms to produce opposing synaptic effects. In ethanol naïve conditions, there was a strong PI3K/Akt bias leading to a disinhibition of pyramidal neurons. Ethanol dependence produced opposite IL-1 effects - enhanced local inhibition via a switch in IL-1ß signaling to the canonical pro-inflammatory MyD88 pathway. Ethanol dependence also increased cellular IL-1ß in the mPFC, while decreasing expression of downstream effectors (Akt, p38 MAPK). Thus, IL-1ß may represent a key neural substrate in ethanol-induced cortical dysfunction. As the IL-1 receptor antagonist (kineret) is already FDA-approved for other diseases, this work underscores the high therapeutic potential of IL-1 signaling/neuroimmune-based treatments for AUD.


Assuntos
Alcoolismo , Etanol , Camundongos , Masculino , Animais , Etanol/farmacologia , Interleucina-1beta/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Camundongos Endogâmicos C57BL , Córtex Pré-Frontal/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
2.
Neuropharmacology ; 168: 107752, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-31476352

RESUMO

The pituitary adenylate cyclase-activating polypeptide (PACAP) system plays a central role in the brain's emotional response to psychological stress by activating cellular processes and circuits associated with threat exposure. The neuropeptide PACAP and its main receptor PAC1 are expressed in the rodent central amygdala (CeA), a brain region critical in negative emotional processing, and CeA PACAPergic signaling drives anxiogenic and stress coping behaviors. Despite this behavioral evidence, PACAP's effects on neuronal activity within the medial subdivision of the CeA (CeM, the major output nucleus for the entire amygdala complex) during basal conditions and after psychological stress remain unknown. Therefore, in the present study, male Wistar rats were subjected to either restraint stress or control conditions, and PACAPergic regulation of CeM cellular function was assessed using immunohistochemistry and whole-cell patch-clamp electrophysiology. Our results demonstrate that PACAP-38 potentiates GABA release in the CeM of naïve rats, via its actions at presynaptic PAC1. Basal PAC1 activity also enhances GABA release in an action potential-dependent manner. Notably, PACAP-38's facilitation of CeM GABA release was attenuated after a single restraint stress session, but after repeated sessions returned to the level observed in naïve animals. A single restraint session also significantly decreased PAC1 levels in the CeM, with repeated restraint sessions producing a slight recovery. Collectively our data reveal that PACAP/PAC1 signaling enhances inhibitory control of the CeM and that psychological stress can modulate this influence to potentially disinhibit downstream effector regions that mediate anxiety and stress-related behaviors. This article is part of the special issue on 'Neuropeptides'.


Assuntos
Núcleo Central da Amígdala/metabolismo , Neurônios GABAérgicos/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Estresse Psicológico/metabolismo , Sinapses/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Núcleo Central da Amígdala/efeitos dos fármacos , Neurônios GABAérgicos/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/fisiologia , Masculino , Ratos , Ratos Wistar , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Restrição Física/efeitos adversos , Restrição Física/psicologia , Estresse Psicológico/psicologia , Sinapses/efeitos dos fármacos
3.
Alcohol Alcohol ; 53(6): 642-649, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29309503

RESUMO

AIMS: Stress induces neuroimmune responses via Toll-like receptor 4 (TLR4) activation. Here, we investigated the role of TLR4 in the effects of the stress peptide corticotropin-releasing factor (CRF) on GABAergic transmission in the central nucleus of the amygdala (CeA) following restraint stress. METHODS: Tlr4 knock out (KO) and wild-type rats were exposed to no stress (naïve), a single restraint stress (1 h) or repeated restraint stress (1 h per day for 3 consecutive days). After 1 h recovery from the final stress session, whole-cell patch-clamp electrophysiology was used to investigate the effects of CRF (200 nM) on CeA GABAA-mediated spontaneous inhibitory postsynaptic currents (sIPSCs). RESULTS: TLR4 does not regulate baseline GABAergic transmission in the CeA of naive and stress-treated animals. However, CRF significantly increased the mean sIPSC frequencies (indicating enhanced GABA release) across all genotypes and stress treatments, except for the Tlr4 KO rats that experienced repeated restraint stress. CONCLUSIONS: Overall, our results suggest a limited role for TLR4 in CRF's modulation of CeA GABAergic synapses in naïve and single stress rats, though TLR4-deficient rats that experienced repeated psychological stress exhibit a blunted CRF cellular response. SHORT SUMMARY: TLR4 has a limited role in CRF's activation of the CeA under basal conditions, but interacts with the CRF system to regulate GABAergic synapse function in animals that experience repeated psychological stress.


Assuntos
Núcleo Central da Amígdala/metabolismo , Hormônio Liberador da Corticotropina/farmacologia , Estresse Psicológico/metabolismo , Transmissão Sináptica/fisiologia , Receptor 4 Toll-Like/fisiologia , Ácido gama-Aminobutírico/metabolismo , Animais , Núcleo Central da Amígdala/efeitos dos fármacos , Hormônio Liberador da Corticotropina/metabolismo , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/fisiologia , Masculino , Ratos , Ratos Transgênicos , Ratos Wistar , Restrição Física , Estresse Psicológico/psicologia , Transmissão Sináptica/efeitos dos fármacos , Receptor 4 Toll-Like/deficiência
4.
Psychoneuroendocrinology ; 51: 122-34, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25306217

RESUMO

Vasopressin signaling has important effects on the regulation of social behaviors and stress responses, and is considered a promising pathway to target for new therapeutics of stress-induced psychiatric disorders. Although there is evidence for sex differences in the behavioral effects of arginine vasopressin (AVP), few data have directly compared the effects of stress on endogenous AVP signaling in males and females. We used California mice (Peromyscus californicus) to study the short and long term effects of social defeat stress on AVP immunoreactive cells in the paraventricular nucleus (PVN) and the posteromedial bed nucleus of the stria terminalis (BNSTmp). Acute exposure to defeat increased AVP/c-fos cells in the PVN and SON of both males and females. In contrast, there were sex differences in the long term effects of defeat. Males but not females exposed to defeat had less avp mRNA in the PVN, and in two experiments defeat reduced the number of AVP positive cells in the caudal PVN of males but not females. Interestingly, during relatively benign social encounters with a target mouse, there was a rapid decrease in AVP percent staining (including cell bodies and fibers) in the PVN of males but not females. Defeat reduced AVP percent staining in males, but did not block the socially induced decrease in percent staining. When mice were tested in resident-intruder tests, males exposed to defeat were no less aggressive than control males whereas aggression was abolished in females. However, bouts of aggression were positively correlated with the number of AVP neurons in the BNSTmp of control males but not stressed males, suggesting that different mechanisms mediate aggression in control and stressed males. These data show that while acute AVP responses to defeat are similar in males and females, the long term effects of defeat on AVP are stronger in males.


Assuntos
Arginina Vasopressina/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Caracteres Sexuais , Comportamento Social , Estresse Psicológico/metabolismo , Animais , Feminino , Masculino , Peromyscus , Núcleos Septais/metabolismo , Predomínio Social , Núcleo Supraóptico/metabolismo
5.
Poult Sci ; 89(10): 2265-72, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20852118

RESUMO

The role of thyroid hormones in the expression of photosensitivity-photorefractoriness in female turkeys was investigated through the use of an antithyroidal agent, 6-n-propyl-2-thiouracil (PTU). In experiment 1, females held continuously from hatch on long day lengths (16L:8D; LD) and fed 0.1% PTU from 0 to 16 wk, began laying eggs at 26 wk of age, peaking at 75% hen-day egg production by 29 wk, whereas controls initiated lay 3 wk earlier but only achieved less than 50% hen-day egg production. In experiment 2, PTU treatment from 10 to 18 wk severely suppressed plasma triiodothyronine and thyroxine, as confirmed by RIA. Egg production of PTU and control hens held on LD from hatch began by 23 wk, with PTU hens reaching a substantially greater rate of lay than controls. Eggs were smaller initially in both treatments but exceeded 75 g by 28 wk. In experiment 3, recycled hens on short day lengths (8L:16D) received PTU for 2 wk before LD and 12 wk thereafter; a subset of these hens was killed after 48 h of LD for immunohistochemical analysis of fos-related antigen (FRA) expression in the tuberal hypothalamus as a marker of photoinduced neuronal activity. The PTU treatment completely forestalled egg production until its withdrawal; egg production then rose sharply to control levels before resuming, along with controls, a typical seasonal decline. The PTU treatment did not impair photoinduced FRA expression. Together, these results demonstrate the following: 1) that a period of pharmacological suppression of triiodothyronine and thyroxine can substitute for short day exposure in conferring photosensitivity on juvenile-aged turkeys (and is actually superior to short day exposure), 2) that reproductive development does not limit egg production of turkey hens photostimulated as young as approximately 20 wk of age, and 3) that effects of thyroid suppression on photostimulation lie downstream of photoinduced FRA expression. Taken together, these results suggest that there is ample physiological potential to substantially advance the age of photoinduced egg production in commercial flocks.


Assuntos
Oviposição/fisiologia , Maturidade Sexual/fisiologia , Hormônios Tireóideos/metabolismo , Perus/fisiologia , Envelhecimento , Animais , Antitireóideos/farmacologia , Feminino , Oviposição/efeitos dos fármacos , Propiltiouracila/farmacologia
6.
J Neuroendocrinol ; 20(11): 1260-9, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18752654

RESUMO

For many temperate-zone avian species, termination of breeding occurs when individuals no longer respond to previously stimulatory day lengths, a condition called photorefractoriness. Long day lengths induce significantly greater expression of c-fos and fos-related antigens (FRAs) in the tuberal hypothalamus of the photosensitive hen than that of the photorefractory hen. The tuber is also a site of photoinducible glial expression of type 2 iodothyronine deiodinase (Dio2), which converts thyroxine into its active form, triiodothyronine (T3). T3 induces withdrawal of glial processes from gonadotrophin-releasing hormone (GnRH) I nerve terminals, which is believed to permit the efficient release of GnRH I into the associated portal vasculature. Using a riboprobe, we tested whether long days induce Dio2 mRNA expression in the turkey tuber and, if so, whether this expression is reduced in photorefractory hens. Long days significantly induced rostral and caudal tuberal hypothalamic Dio2 expression in photosensitive hens. Photorefractory hens had reduced expression of Dio2 with most subjects expressing no detectable mRNA in the rostral tuber and variably attenuated amounts throughout the medial and caudal tuber. We also performed double-label immunohistochemistry to identify co-localisation between FRAs and glial fibrillary acidic protein, a glial marker. FRAs were present in the nuclei of a few astrocytes in the median eminence and infundibular nucleus of the tuber. The temporal and spatial coincidence between FRA and Dio2 expression, their mutual association with glia, and the attenuation of their response during photorefractoriness suggests that the two events are linked and that photorefractoriness involves a reduced capacity for photo-inducible gene expression within glia of the tuberal hypothalamus.


Assuntos
Hipotálamo , Iodeto Peroxidase , Fotoperíodo , RNA Mensageiro/metabolismo , Perus , Animais , Ritmo Circadiano/fisiologia , Feminino , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Hipotálamo/citologia , Hipotálamo/enzimologia , Hibridização In Situ , Iodeto Peroxidase/genética , Iodeto Peroxidase/metabolismo , Luz , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Perus/anatomia & histologia , Perus/metabolismo , Iodotironina Desiodinase Tipo II
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...