Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-34398757

RESUMO

Cochlear implants are very well established in the rehabilitation of hearing loss and are regarded as the most successful neuroprostheses to date. While a lot of progress has also been made in the neighboring field of specific vestibular implants, some diseases affect the entire inner ear, leading to both hearing and vestibular hypo- or dysfunction. The proximity of the cochlear and vestibular organs suggests a single combined implant as a means to alleviate the associated impairments. While both organs can be stimulated in a similar way with electric pulses applied through implanted electrodes, the typical phase durations needed in the vestibular system seem to be substantially larger than those typically needed in the cochlear system. Therefore, when using sequential stimulation in a combined implant, the pulse stream to the cochlea is interrupted by comparatively large gaps in which vestibular stimulation can occur. We investigate the impact of these gaps in the auditory stream on speech perception. Specifically, we compare a number of stimulation strategies with different gap lengths and distributions and evaluate whether it is feasible to use them without having a noticeable decline in perception and quality of speech. This is a prerequisite for any practicable stimulation strategy of a combined system and can be investigated even in recipients of a normal cochlear implant. Our results show that there is no significant deterioration in speech perception for the different strategies examined in this paper, leaving the strategies as viable candidates for prospective combined cochleo-vestibular implants.


Assuntos
Implante Coclear , Implantes Cocleares , Surdez , Percepção da Fala , Estimulação Acústica , Estimulação Elétrica , Humanos , Estudos Prospectivos
2.
Trends Hear ; 25: 23312165211020645, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34041983

RESUMO

Two-electrode stimuli presented on adjacent mid-array contacts in cochlear-implant users elicit pitch percepts that are not consistent with a summation of the two temporal patterns. This indicates that low-rate temporal rate codes can be applied with considerable independence on adjacent mid-array electrodes. At issue in this study was whether a similar independence of temporal pitch cues can also be observed for more apical sites of stimulation, where temporal cues have been shown to be more reliable than place cues, in contrast to middle and basal sites. In cochlear-implant recipients with single-sided deafness implanted with long lateral-wall electrode arrays, pitch percepts were assessed by matching the pitch of dual-electrode stimuli with pure tones presented to the contralateral normal-hearing ear. The results were supported with an additional pitch-ranking experiment, in a different subject population with bilateral deafness. Unmodulated pulse trains with 100, 200, and 400 pulses per second were presented on three pairs of adjacent electrodes. Pulses were separated by the minimal interchannel delay (1.7 µs) in a short-delay configuration and by half the pulse period in a long-delay configuration. The hypothesis was that subjects would perceive a pitch corresponding to the doubled temporal pattern for the long-delay stimuli due to the summation of excitation patterns from adjacent apical electrodes, if those electrodes were to activate largely overlapping neural populations. However, we found that the mean matched acoustic pitch of the long-delay pulses was not significantly different from that of the short-delay pulses. These findings suggest that also in the apical region in long-array cochlear-implant recipients, temporal cues can be transmitted largely independently on adjacent electrodes.


Assuntos
Implante Coclear , Implantes Cocleares , Surdez , Estimulação Acústica , Cóclea , Humanos , Percepção da Altura Sonora
3.
Biomed Eng Online ; 16(1): 3, 2017 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-28086905

RESUMO

BACKGROUND: Improvements in eddy current suppression are necessary to meet the demand for increasing miniaturization of inductively driven transmission systems in industrial and biomedical applications. The high magnetic permeability and the simultaneously low electrical conductivity of ferrite materials make them ideal candidates for shielding metallic surfaces. For systems like cochlear implants the transmission of data as well as energy over an inductive link is conducted within a well-defined parameter set. For these systems, the shielding can be of particular importance if the properties of the link can be preserved. RESULTS: In this work, we investigate the effect of single and double-layered substrates consisting of ferrite and/or copper on the inductance and coupling of planar spiral coils. The examined link systems represent realistic configurations for active implantable systems such as cochlear implants. Experimental measurements are complemented with analytical calculations and finite element simulations, which are in good agreement for all measured parameters. The results are then used to study the transfer efficiency of an inductive link in a series-parallel resonant topology as a function of substrate size, the number of coil turns and coil separation. CONCLUSIONS: We find that ferrite sheets can be used to shield the system from unwanted metallic surfaces and to retain the inductive link parameters of the unperturbed system, particularly its transfer efficiency. The required size of the ferrite plates is comparable to the size of the coils, which makes the setup suitable for practical implementations. Since the sizes and geometries chosen for the studied inductive links are comparable to those of cochlear implants, our conclusions apply in particular to these systems.


Assuntos
Condutividade Elétrica , Compostos Férricos , Campos Magnéticos , Cobre , Análise de Elementos Finitos
4.
Phys Rev Lett ; 96(4): 043003, 2006 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-16486818

RESUMO

Based on a real-time measurement of the motion of a single ion in a Paul trap, we demonstrate its electromechanical cooling below the Doppler limit by homodyne feedback control (cold damping). The feedback cooling results are well described by a model based on a quantum mechanical master equation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...