Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxics ; 9(4)2021 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-33918084

RESUMO

Metabolites of polychlorinated biphenyls (PCBs)-hydroxylated PCBs (OH-PCBs), chlorobenzyl alcohols (CB-OHs), and chlorobenzaldehydes (CB-CHOs)-were incubated in vitro with the extracellular liquid of Pleurotus ostreatus, which contains mainly laccase and low manganese-dependent peroxidase (MnP) activity. The enzymes were able to decrease the amount of most of the tested OH-PCBs by > 80% within 1 h; the removal of more recalcitrant OH-PCBs was greatly enhanced by the addition of the laccase mediator syringaldehyde. Conversely, glutathione substantially hindered the reaction, suggesting that it acted as a laccase inhibitor. Hydroxylated dibenzofuran and chlorobenzoic acid were identified as transformation products of OH-PCBs. The extracellular enzymes also oxidized the CB-OHs to the corresponding CB-CHOs on the order of hours to days; however, the mediated and nonmediated setups exhibited only slight differences, and the participating enzymes could not be determined. When CB-CHOs were used as the substrates, only partial transformation was observed. In an additional experiment, the extracellular liquid of Irpex lacteus, which contains predominantly MnP, was able to efficiently transform CB-CHOs with the aid of glutathione; mono- and di-chloroacetophenones were detected as transformation products. These results demonstrate that extracellular enzymes of ligninolytic fungi can act on a wide range of PCB metabolites, emphasizing their potential for bioremediation.

2.
Archaea ; 2021: 8894455, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33628124

RESUMO

The effect of the amount of hydrogen supplied for the in situ biological biogas upgrading was investigated by monitoring the process and evolution of the microbial community. Two parallel reactors, operated at 37°C for 211 days, were continuously fed with sewage sludge at a constant organic loading rate of 1.5 gCOD∙(L∙d)-1 and hydrogen (H2). The molar ratio of H2/CO2 was progressively increased from 0.5 : 1 to 7 : 1 to convert carbon dioxide (CO2) into biomethane via hydrogenotrophic methanogenesis. Changes in the biogas composition become statistically different above the stoichiometric H2/CO2 ratio (4 : 1). At a H2/CO2 ratio of 7 : 1, the methane content in the biogas reached 90%, without adversely affecting degradation of the organic matter. The possibility of selecting, adapting, and enriching the original biomass with target-oriented microorganisms able to biologically convert CO2 into methane was verified: high throughput sequencing of 16S rRNA gene revealed that hydrogenotrophic methanogens, belonging to Methanolinea and Methanobacterium genera, were dominant. Based on the outcomes of this study, further optimization and engineering of this process is feasible and needed as a means to boost energy recovery from sludge treatment.


Assuntos
Biocombustíveis , Microbiota , Reatores Biológicos , Dióxido de Carbono , Hidrogênio , Metano , RNA Ribossômico 16S/genética
3.
Sci Total Environ ; 619-620: 784-793, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29161603

RESUMO

A laboratory approach was adopted in this study to explore the potential of 37Cl-CSIA in combination with 13C-CSIA and Biological Molecular Tools (BMTs) to estimate the occurrence of monochloroenzene (MCB) aerobic biodegradation. A new analytical method for 37Cl-CSIA of MCB was developed in this study. This methodology using a GC-IRMS allowed to determine δ37Cl values within an internal error of ±0.3‰. Samples from a heavily MCB contaminated site were collected and MCB aerobic biodegradation microcosms with indigenous cultures in natural and enhanced conditions were set up. The microcosms data show a negligible fractionation for 13C associated to MCB mass decrease of >95% over the incubation time. Conversely, an enrichment factor of -0.6±0.1‰ was estimated for 37Cl, which is a reflection of a secondary isotope effect. Moreover, the dual isotope approach showed a pattern for aerobic degradation which differ from the theoretical trend for reductive dehalogenation. Quantitative Polymerase Chain Reaction (qPCR) results showed a significant increase in todC gene copy number with respect to its initial levels for both natural attenuation and biostimulated microcosms, suggesting its involvement in the MCB aerobic degradation, whereas phe gene copy number increased only in the biostimulated ones. Indeed, 37Cl fractionation in combination with the dual carbon­chlorine isotope approach and the todC gene copy number represent valuable indicators for a qualitative assessment of MCB aerobic biodegradation in the field.


Assuntos
Biodegradação Ambiental , Clorobenzenos/metabolismo , Poluentes Químicos da Água/metabolismo , Bactérias/genética , Bactérias/metabolismo , Isótopos de Carbono , Cloretos , Genes Bacterianos , Sedimentos Geológicos/química , Água Subterrânea/química , Halogenação
4.
J Hazard Mater ; 324(Pt B): 701-710, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-27894756

RESUMO

The objective of this work was to test the PCB-degrading abilities of two white-rot fungi, namely Pleurotus ostreatus and Irpex lacteus, in real contaminated soils with different chemical properties and autochthonous microflora. In addition to the efficiency in PCB removal, attention was given to other important parameters, such as changes in the toxicity and formation of PCB transformation products. Moreover, structural shifts and dynamics of both bacterial and fungal communities were monitored using next-generation sequencing and phospholipid fatty acid analysis. The best results were obtained with P. ostreatus, which resulted in PCB removals of 18.5, 41.3 and 50.5% from the bulk, top (surface) and rhizosphere, respectively, of dumpsite soils after 12 weeks of treatment. Numerous transformation products were detected (hydoxylated and methoxylated PCBs, chlorobenzoates and chlorobenzyl alcohols), which indicates that both fungi were able to oxidize and decompose the aromatic moiety of PCBs in the soils. Microbial community analysis revealed that P. ostreatus efficiently colonized the soil samples and suppressed other fungal genera. However, the same fungus substantially stimulated bacterial taxa that encompass putative PCB degraders. The results of this study finally demonstrated the feasibility of using this fungus for possible scaled-up bioremediation applications.


Assuntos
Pleurotus/crescimento & desenvolvimento , Pleurotus/metabolismo , Bifenilos Policlorados/análise , Poluentes do Solo/análise , Biodegradação Ambiental , República Tcheca , Bifenilos Policlorados/metabolismo , Solo/química , Microbiologia do Solo , Poluentes do Solo/metabolismo
5.
Sci Total Environ ; 566-567: 250-259, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27220102

RESUMO

The removal of aged hydrophobic contaminants from fine-textured soils is a challenging issue in remediation. The objective of this study was to compare the efficacy of augmentation treatments to that of biostimulation in terms of total aliphatic hydrocarbon (TAH) and toxicity removal from a historically contaminated clay soil and to assess their impact on the resident microbial community. To this aim, Pleurotus ostreatus, Botryosphaeria rhodina and a combination of both were used as the inoculants while the addition of a sterilized lignocellulose mixture to soil (1:5, w/w) was used as a biostimulation approach. As opposed to the non-amended control soil, where no changes in TAH concentration and residual toxicity were observed after 60days, the activation of specialized bacteria was found in the biostimulated microcosms resulting in significant TAH removal (79.8%). The bacterial community structure in B. rhodina-augmented microcosms did not differ from the biostimulated microcosms due to the inability of the fungus to be retained within the resident microbiota. Best TAH removals were observed in microcosms inoculated with P. ostreatus alone (Po) and in binary consortium with B. rhodina (BC) (86.8 and 88.2%, respectively). In these microcosms, contaminant degradation exceeded their bioavailability thresholds determined by sequential supercritical CO2 extraction. Illumina metabarcoding of 16S rRNA gene showed that the augmentation with Po and BC led to lower relative abundances of Gram(+) taxa, Actinobacteria in particular, than those in biostimulated microcosms. Best detoxification, with respect to the non-amended incubation control, was found in Po microcosms where a drop in collembola mortality (from 90 to 22%) occurred. At the end of incubation, in both Po and BC, the relative abundances of P. ostreatus sequences were higher than 60% thus showing the suitability of this fungus in bioaugmentation-based remediation applications.


Assuntos
Ascomicetos/metabolismo , Hidrocarbonetos/metabolismo , Pleurotus/metabolismo , Microbiologia do Solo , Poluentes do Solo/metabolismo , Biodegradação Ambiental , Disponibilidade Biológica , Sequenciamento de Nucleotídeos em Larga Escala , Itália
6.
Sci Total Environ ; 505: 545-54, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25461057

RESUMO

The present work was aimed at isolating and identifying the main members of the mycobiota of a clay soil historically contaminated by mid- and long-chain aliphatic hydrocarbons (AH) and to subsequently assess their hydrocarbon-degrading ability. All the isolates were Ascomycetes and, among them, the most interesting was Pseudoallescheria sp. 18A, which displayed both the ability to use AH as the sole carbon source and to profusely colonize a wheat straw:poplar wood chip (70:30, w/w) lignocellulosic mixture (LM) selected as the amendment for subsequent soil remediation microcosms. After a 60 d mycoaugmentation with Pseudoallescheria sp. of the aforementioned soil, mixed with the sterile LM (5:1 mass ratio), a 79.7% AH reduction and a significant detoxification, inferred by a drop in mortality of Folsomia candida from 90 to 24%, were observed. However, similar degradation and detoxification outcomes were found in the non-inoculated incubation control soil that had been amended with the sterile LM. This was due to the biostimulation exerted by the amendment on the resident microbiota, fungi in particular, the activity and density of which were low, instead, in the non-amended incubation control soil.


Assuntos
Fungos/metabolismo , Hidrocarbonetos/metabolismo , Microbiologia do Solo , Poluentes do Solo/metabolismo , Biodegradação Ambiental , Hidrocarbonetos/análise , Solo/química , Poluentes do Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...