Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38842923

RESUMO

Epitaxial heterostructures with topological insulators enable novel quantum phases and practical device applications. Their topological electronic states are sensitive to the microscopic parameters, including structural inversion asymmetry (SIA), which is an inherent feature of many real heterostructures. Controlling SIA is challenging, because it requires the ability to tune the displacement field across the topological film. Here, using nanopatterned gates, we demonstrate a tunable displacement field in a heterostructure of the two-dimensional topological insulator cadmium arsenide. Transport studies in magnetic fields reveal an extreme sensitivity of the band inversion to SIA. We show that a relatively small displacement field (∼50 mV/nm) converts the crossing of the two zeroth Landau levels in magnetic field to an avoided crossing, signaling a change to trivial band order. This work demonstrates a universal methodology for tuning electronic states in topological thin films.

2.
Adv Mater ; 36(28): e2311644, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38684220

RESUMO

Topological insulators and semimetals have been shown to possess intriguing thermoelectric properties promising for energy harvesting and cooling applications. However, thermoelectric transport associated with the Fermi arc topological surface states on topological Dirac semimetals remains less explored. This work systematically examines thermoelectric transport in a series of topological Dirac semimetal Cd3As2 thin films grown by molecular beam epitaxy. Surprisingly, significantly enhanced Seebeck effect and anomalous Nernst effect are found at cryogenic temperatures when the Cd3As2 layer is thin. In particular, a peak Seebeck coefficient of nearly 500 µV K-1 and a corresponding thermoelectric power factor over 30 mW K-2 m-1 are observed at 5 K in a 25-nm-thick sample. Combining angle-dependent quantum oscillation analysis, magnetothermoelectric measurement, transport modeling, and first-principles simulation, the contributions from bulk and surface conducting channels are isolated and the unusual thermoelectric properties are attributed to the topological surface states. The analysis showcases the rich thermoelectric transport physics in quantum-confined topological Dirac semimetal thin films and suggests new routes to achieving high thermoelectric performance at cryogenic temperatures.

3.
Nano Lett ; 24(1): 222-228, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38147363

RESUMO

Chirality of massless fermions emerging in condensed matter is a key to understand their characteristic behavior as well as to exploit their functionality. However, the chiral nature of massless fermions in Dirac semimetals has remained elusive, due to equivalent occupation of carriers with the opposite chirality in thermal equilibrium. Here, we show that the isospin degree of freedom, which labels the chirality of massless carriers from a crystallographic point of view, can be injected by circularly polarized light. Terahertz Faraday rotation spectroscopy successfully detects the anomalous Hall conductivity by a light-induced isospin polarization in a three-dimensional Dirac semimetal, Cd3As2. Spectral analysis of the Hall conductivity reveals a long scattering time and a long decay time, which are characteristic of the isospin. The long-lived, robust, and reversible character of the isospin promises a potential application of Dirac semimetals in future information technology.

4.
Phys Rev Lett ; 131(9): 096901, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37721840

RESUMO

We experimentally elucidate the origin of the anomalous Hall conductivity in a three-dimensional Dirac semimetal, Cd_{3}As_{2}, driven by circularly polarized light. Using time-resolved terahertz Faraday rotation spectroscopy, we determine the transient Hall conductivity spectrum with special attention to its sign. Our results clearly show the dominance of direct photocurrent generation assisted by the terahertz electric field. The contribution from the Floquet-Weyl nodes is found to be minor when the driving light is in resonance with interband transitions. We develop a generally applicable classification of microscopic mechanisms of light-induced anomalous Hall conductivity.

6.
Phys Rev Lett ; 131(4): 046601, 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37566870

RESUMO

We report a topological phase transition in quantum-confined cadmium arsenide (Cd_{3}As_{2}) thin films under an in-plane Zeeman field when the Fermi level is tuned into the topological gap via an electric field. Symmetry considerations in this case predict the appearance of a two-dimensional Weyl semimetal (2D WSM), with a pair of Weyl nodes of opposite chirality at charge neutrality that are protected by space-time inversion (C_{2}T) symmetry. We show that the 2D WSM phase displays unique transport signatures, including saturated resistivities on the order of h/e^{2} that persist over a range of in-plane magnetic fields. Moreover, applying a small out-of-plane magnetic field, while keeping the in-plane field within the stability range of the 2D WSM phase, gives rise to a well-developed odd integer quantum Hall effect, characteristic of degenerate, massive Weyl fermions. A minimal four-band k·p model of Cd_{3}As_{2}, which incorporates first-principles effective g factors, qualitatively explains our findings.

7.
Nano Lett ; 23(12): 5648-5653, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37307419

RESUMO

Cadmium arsenide (Cd3As2) thin films feature a two-dimensional topological insulator (2D TI) phase for certain thicknesses, which theoretically hosts a set of counterpropagating helical edge states that are characteristic of a quantum spin Hall (QSH) insulator. In devices containing electrostatically defined junctions and for magnetic fields below a critical value, chiral edge modes of the quantum Hall effect can coexist with QSH-like edge modes. In this work, we use a quantum point contact (QPC) device to characterize edge modes in the 2D TI phase of Cd3As2 and to understand how they can be controllably transmitted, which is important for use in future quantum interference devices. We investigate equilibration among both types of modes and find non-spin-selective equilibration. We also demonstrate the effect of the magnetic field on suppressing equilibration. We discuss the potential role of QSH-like modes in a transmission pathway that precludes full pinch-off.

8.
Phys Rev Lett ; 130(4): 046201, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36763420

RESUMO

Two-dimensional topological insulators (2D TIs) are a highly desired quantum phase but few materials have demonstrated clear signatures of a 2D TI state. It has been predicted that 2D TIs can be created from thin films of three-dimensional TIs by reducing the film thickness until the surface states hybridize. Here, we employ this technique to report the first observation of a 2D TI state in epitaxial thin films of cadmium arsenide, a prototype Dirac semimetal in bulk form. Using magnetotransport measurements with electrostatic gating, we observe a Landau level spectrum and quantum Hall effect that are in excellent agreement with those of an ideal 2D TI. Specifically, we observe a crossing of the zeroth Landau levels at a critical magnetic field. We show that the film thickness can be used to tune the critical magnetic field. Moreover, a larger change in film thickness causes a transition from a 2D TI to a 2D trivial insulator, just as predicted by theory. The high degree of tunability available in epitaxial cadmium arsenide heterostructures can thus be used to fine-tune the 2D TI, which is essential for future topological devices.

9.
Phys Rev Lett ; 129(20): 207402, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36461987

RESUMO

Using broadband (12-45 THz) multi-terahertz spectroscopy, we show that stimulated Rayleigh scattering dominates the transient optical conductivity of cadmium arsenide, a Dirac semimetal, under an optical driving field at 30 THz. The characteristic dispersive line shape with net optical gain is accounted for by optical transitions between light-induced Floquet subbands, strikingly enhanced by the longitudinal plasma mode. Stimulated Rayleigh scattering with an unprecedentedly large refractive index change may pave the way for slow light generation in conductive solids at room temperature.

10.
Sci Adv ; 8(27): eabn4479, 2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35857456

RESUMO

A bulk crystal of cadmium arsenide is a three-dimensional Dirac semimetal, but, in a thin film, it can behave like a three-dimensional topological insulator. This tunability provides unique opportunities to manipulate and explore a topological insulator phase. However, an obstacle to engineering such tunability is the subtlety of transport-based discriminants for topological phases. In this work, the quantum capacitance of cadmium arsenide-based heterostructures provides two direct experimental signatures of three-dimensional topological insulator physics: an insulating three-dimensional bulk and a Landau level at zero energy that does not disperse in a magnetic field. We proceed to join our ability to see these fingerprints of the topological surface states with flexibility afforded by our epitaxial heterostructures to demonstrate a route toward controlling the energy of the Dirac nodes on each surface. These results point to new avenues for engineering topological insulators based on cadmium arsenide.

11.
Nano Lett ; 22(6): 2358-2364, 2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35285654

RESUMO

The electromagnetic response of Dirac semimetals in the infrared and terahertz frequency ranges is attracting growing interest for potential applications in optoelectronics and nonlinear optics. The interplay between the free-carrier response and interband transitions in the gapless, linear dispersion relation plays a key role in enabling novel functionalities. Here we investigate ultrafast dynamics in thin films of a photoexcited Dirac semimetal Cd3As2 by probing the broadband response functions as complex quantities in the multiterahertz region (10-45 THz, 40-180 meV, or 7-30 µm), which covers the crossover between the inter- and intraband response. We resolve dynamics of the photoexcited nonthermal electrons, which merge with originally existing carriers to form a single thermalized electron gas and how it is facilitated by high-density excitation. We also demonstrate that a large reduction of the refractive index by 80% dominates the nonequilibrium infrared response, which can be utilized for designing ultrafast switches in active optoelectronics.

12.
Sci Adv ; 7(16)2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33863734

RESUMO

The linear band crossings of 3D Dirac and Weyl semimetals are characterized by a charge chirality, the parallel or antiparallel locking of electron spin to its momentum. These materials are believed to exhibit an E · B chiral magnetic effect that is associated with the near conservation of chiral charge. Here, we use magneto-terahertz spectroscopy to study epitaxial Cd3As2 films and extract their conductivities σ(ω) as a function of E · B. As field is applied, we observe a markedly sharp Drude response that rises out of the broader background. Its appearance is a definitive signature of a new transport channel and consistent with the chiral response, with its spectral weight a measure of the net chiral charge and width a measure of the scattering rate between chiral species. The field independence of the chiral relaxation establishes that it is set by the approximate conservation of the isospin that labels the crystalline point-group representations.

13.
ACS Nano ; 15(3): 5459-5466, 2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33705102

RESUMO

As the need for ever greater transistor density increases, the commensurate decrease in device size approaches the atomic limit, leading to increased energy loss and leakage currents, reducing energy efficiencies. Alternative state variables, such as electronic spin rather than electronic charge, have the potential to enable more energy-efficient and higher performance devices. These spintronic devices require materials capable of efficiently harnessing the electron spin. Here we show robust spin transport in Cd3As2 films up to room temperature. We demonstrate a nonlocal spin valve switch from this material, as well as inverse spin Hall effect measurements yielding spin Hall angles as high as θSH = 1.5 and spin diffusion lengths of 10-40 µm. Long spin-coherence lengths with efficient charge-to-spin conversion rates and coherent spin transport up to room temperature, as we show here in Cd3As2, are enabling steps toward realizing actual spintronic devices.

14.
J Pharm Sci ; 109(11): 3340-3351, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32871152

RESUMO

Silicone can present a challenge during the development of a biologics drug product particularly in pre-filled syringe (PFS). Due to silicone related challenges, substantial changes in components and manufacturing of the PFS are being sought. Cross-linking of the silicone being one of them, can help reduce mobilization of the silicone into drug product whilst retaining its functionality of lubrication during injection. In this work, we systematically compare the stability of a fusion protein and monoclonal antibody formulation in conventionally siliconized and cross-linked siliconized PFS available from commercial manufacturers. The two types of syringes did not influence the aggregation profile of proteins as determined by HP-SEC. Compared to conventionally siliconized PFS, a cross-linked siliconized PFS can have a favorable or indifferent impact (depending on vendor) on the sub-visible particles profile as assessed by light obscuration and microflow imaging. The different PFS after 24 months of long-term storage showed comparable functionality attributes like break-loose/gliding force and silicone oil distribution. Cross-linked siliconized PFS can offer an incremental advantage over conventionally siliconized PFS for the moderately concentrated protein solutions, however the differences in the quality of these PFS amongst manufacturers is an important aspect that needs to be considered as shown in this study.


Assuntos
Produtos Biológicos , Preparações Farmacêuticas , Anticorpos Monoclonais , Óleos de Silicone , Seringas
15.
Phys Rev Lett ; 125(8): 087601, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32909797

RESUMO

SrTiO_{3} is an incipient ferroelectric that is believed to exhibit a prototype displacive, soft mode ferroelectric transition when subjected to mechanical stress or alloying. We use high-angle annular dark-field imaging in scanning transmission electron microscopy to reveal local polar regions in the room-temperature, paraelectric phase of strained SrTiO_{3} films, which undergo a ferroelectric transition at low temperatures. These films contain nanometer-sized domains in which the Ti columns are displaced. In contrast, these nanodomains are absent in unstrained films, which do not become ferroelectric. The results show that the ferroelectric transition of strained SrTiO_{3} is an order-disorder transition. We discuss the impact of the results on the nature of the ferroelectric transition of SrTiO_{3}.

16.
Nano Lett ; 20(9): 6542-6547, 2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32786945

RESUMO

The mechanisms by which itinerant carriers compete with polar crystal distortions are a key unresolved issue for polar superconductors, which offer new routes to unconventional Cooper pairing. Strained, doped SrTiO3 films undergo successive ferroelectric and superconducting transitions, making them ideal candidates to elucidate the nature of this competition. Here, we reveal these interactions using scanning transmission electron microscopy studies of the evolution of polar nanodomains as a function of doping. These nanodomains are a precursor to the ferroelectric phase and a measure of long-range Coulomb interactions. With increasing doping, the magnitude of the polar displacements, the nanodomain size, and the Curie temperature are systematically suppressed. In addition, we show that disorder caused by the dopant atoms themselves presents a second contribution to the destabilization of the ferroelectric state. The results provide evidence for two distinct mechanisms that suppress the polar transition with doping in a ferroelectric superconductor.

17.
Phys Rev Lett ; 124(11): 117402, 2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-32242712

RESUMO

We report strong terahertz (∼10^{12} Hz) high harmonic generation at room temperature in thin films of Cd_{3}As_{2}, a three-dimensional Dirac semimetal. Third harmonics are detectable with a tabletop light source and can be as strong as 100 V/cm by applying a fundamental field of 6.5 kV/cm inside the film, demonstrating an unprecedented efficiency for terahertz frequency conversion. Our time-resolved terahertz spectroscopy and calculations also clarify the microscopic mechanism of the nonlinearity originating in the coherent acceleration of Dirac electrons in momentum space. Our results provide clear insights for nonlinear currents of Dirac electrons driven by the terahertz field under the influence of scattering, paving the way toward novel devices for high-speed electronics and photonics based on topological semimetals.

18.
Phys Rev Mater ; 4(5)2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-34142004

RESUMO

We report on the evolution of the average and depth-dependent magnetic order in thin-film samples of biaxially stressed and electron-doped EuTiO3 for samples across a doping range < 0.1 to 7.8 × 1020 cm-3. Under an applied in-plane magnetic field, the G-type antiferromagnetic ground state undergoes a continuous spin-flop phase transition into in-plane, field-polarized ferromagnetism. The critical field for ferromagnetism slightly decreases with an increasing number of free carriers, yet the field evolution of the spin-flop transition is qualitatively similar across the doping range. Unexpectedly, we observe interfacial ferromagnetism with saturated Eu2+ moments at the substrate interface at low fields preceding ferromagnetic saturation throughout the bulk of the degenerate semiconductor film. We discuss the implications of these findings for the unusual magnetotransport properties of this compound.

19.
Nat Commun ; 10(1): 5534, 2019 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-31797932

RESUMO

The emergence of saddle-point Van Hove singularities (VHSs) in the density of states, accompanied by a change in Fermi surface topology, Lifshitz transition, constitutes an ideal ground for the emergence of different electronic phenomena, such as superconductivity, pseudo-gap, magnetism, and density waves. However, in most materials the Fermi level, [Formula: see text], is too far from the VHS where the change of electronic topology takes place, making it difficult to reach with standard chemical doping or gating techniques. Here, we demonstrate that this scenario can be realized at the interface between a Mott insulator and a band insulator as a result of quantum confinement and correlation enhancement, and easily tuned by fine control of layer thickness and orbital occupancy. These results provide a tunable pathway for Fermi surface topology and VHS engineering of electronic phases.

20.
Sci Adv ; 5(4): eaaw0120, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31032417

RESUMO

The nature of superconductivity in SrTiO3, the first oxide superconductor to be discovered, remains a subject of intense debate several decades after its discovery. SrTiO3 is also an incipient ferroelectric, and several recent theoretical studies have suggested that the two properties may be linked. To investigate whether such a connection exists, we grew strained, epitaxial SrTiO3 films, which are known to undergo a ferroelectric transition. We show that, for a range of carrier densities, the superconducting transition temperature is enhanced by up to a factor of two compared to unstrained films grown under the same conditions. Moreover, for these films, superconductivity emerges from a resistive state. We discuss the localization behavior in the context of proximity to ferroelectricity. The results point to new opportunities to enhance superconducting transition temperatures in oxide materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...