Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
PLoS Comput Biol ; 19(7): e1011185, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37432974

RESUMO

Mammalian DNA folds into 3D structures that facilitate and regulate genetic processes such as transcription, DNA repair, and epigenetics. Several insights derive from chromosome capture methods, such as Hi-C, which allow researchers to construct contact maps depicting 3D interactions among all DNA segment pairs. These maps show a complex cross-scale organization spanning megabase-pair compartments to short-ranged DNA loops. To better understand the organizing principles, several groups analyzed Hi-C data assuming a Russian-doll-like nested hierarchy where DNA regions of similar sizes merge into larger and larger structures. Apart from being a simple and appealing description, this model explains, e.g., the omnipresent chequerboard pattern seen in Hi-C maps, known as A/B compartments, and foreshadows the co-localization of some functionally similar DNA regions. However, while successful, this model is incompatible with the two competing mechanisms that seem to shape a significant part of the chromosomes' 3D organization: loop extrusion and phase separation. This paper aims to map out the chromosome's actual folding hierarchy from empirical data. To this end, we take advantage of Hi-C experiments and treat the measured DNA-DNA interactions as a weighted network. From such a network, we extract 3D communities using the generalized Louvain algorithm. This algorithm has a resolution parameter that allows us to scan seamlessly through the community size spectrum, from A/B compartments to topologically associated domains (TADs). By constructing a hierarchical tree connecting these communities, we find that chromosomes are more complex than a perfect hierarchy. Analyzing how communities nest relative to a simple folding model, we found that chromosomes exhibit a significant portion of nested and non-nested community pairs alongside considerable randomness. In addition, by examining nesting and chromatin types, we discovered that nested parts are often associated with active chromatin. These results highlight that cross-scale relationships will be essential components in models aiming to reach a deep understanding of the causal mechanisms of chromosome folding.


Assuntos
Cromatina , Cromossomos , Animais , Cromossomos/genética , Cromatina/genética , DNA/genética , Montagem e Desmontagem da Cromatina , Epigênese Genética , Mamíferos/genética
3.
Exp Cell Res ; 422(1): 113431, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36423660

RESUMO

The genomes of immortalized cell lines (and cancer cells) are characterized by multiple types of aberrations, ranging from single nucleotide polymorphisms (SNPs) to structural rearrangements that have accumulated over time. Consequently, it is difficult to estimate the relative impact of different aberrations, the order of events, and which gene functions were under selective pressure at the early stage towards cellular immortalization. Here, we have established novel cell cultures derived from Drosophila melanogaster embryos that were sampled at multiple time points over a one-year period. Using short-read DNA sequencing, we show that copy-number gain in preferentially stress-related genes were acquired in a dominant fraction of cells in 300-days old cultures. Furthermore, transposable elements were active in cells of all cultures. Only a few (<1%) SNPs could be followed over time, and these showed no trend to increase or decrease. We conclude that the early cellular responses of a novel culture comprise sequence duplication and transposable element activity. During immortalization, positive selection first occurs on genes that are related to stress response before shifting to genes that are related to growth.


Assuntos
Drosophila melanogaster , Duplicação Gênica , Animais , Drosophila melanogaster/genética , Análise de Sequência de DNA , Linhagem Celular , Elementos de DNA Transponíveis/genética
4.
Microbiologyopen ; 11(5): e1320, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36314747

RESUMO

BACKGROUND: Surface raw water used as a source for drinking water production is a critical resource, sensitive to contamination. We conducted a study on Swedish raw water sources, aiming to identify mutually co-occurring metacommunities of bacteria, and environmental factors driving such patterns. METHODS: The water sources were different regarding nutrient composition, water quality, and climate characteristics, and displayed various degrees of anthropogenic impact. Water inlet samples were collected at six drinking water treatment plants over 3 years, totaling 230 samples. The bacterial communities of DNA sequenced samples (n = 175), obtained by 16S metabarcoding, were analyzed using a joint model for taxa abundance. RESULTS: Two major groups of well-defined metacommunities of microorganisms were identified, in addition to a third, less distinct, and taxonomically more diverse group. These three metacommunities showed various associations to the measured environmental data. Predictions for the well-defined metacommunities revealed differing sets of favored metabolic pathways and life strategies. In one community, taxa with methanogenic metabolism were common, while a second community was dominated by taxa with carbohydrate and lipid-focused metabolism. CONCLUSION: The identification of ubiquitous persistent co-occurring bacterial metacommunities in freshwater habitats could potentially facilitate microbial source tracking analysis of contamination issues in freshwater sources.


Assuntos
Água Potável , Suécia , Bactérias/genética , Água Doce/microbiologia , Ecossistema , RNA Ribossômico 16S/genética
5.
BMC Genomics ; 23(1): 276, 2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35392795

RESUMO

BACKGROUND: Immortalized cell lines are widely used model systems whose genomes are often highly rearranged and polyploid. However, their genome structure is seldom deciphered and is thus not accounted for during analyses. We therefore used linked short- and long-read sequencing to perform haplotype-level reconstruction of the genome of a Drosophila melanogaster cell line (S2-DRSC) with a complex genome structure. RESULTS: Using a custom implementation (that is designed to use ultra-long reads in complex genomes with nested rearrangements) to call structural variants (SVs), we found that the most common SV was repetitive sequence insertion or deletion (> 80% of SVs), with Gypsy retrotransposon insertions dominating. The second most common SV was local sequence duplication. SNPs and other SVs were rarer, but several large chromosomal translocations and mitochondrial genome insertions were observed. Haplotypes were highly similar at the nucleotide level but structurally very different. Insertion SVs existed at various haplotype frequencies and were unlinked on chromosomes, demonstrating that haplotypes have different structures and suggesting the existence of a mechanism that allows SVs to propagate across haplotypes. Finally, using public short-read data, we found that transposable element insertions and local duplications are common in other D. melanogaster cell lines. CONCLUSIONS: The S2-DRSC cell line evolved through retrotransposon activity and vast local sequence duplications, that we hypothesize were the products of DNA re-replication events. Additionally, mutations can propagate across haplotypes (possibly explained by mitotic recombination), which enables fine-tuning of mutational impact and prevents accumulation of deleterious events, an inherent problem of clonal reproduction. We conclude that traditional linear homozygous genome representation conceals the complexity when dealing with rearranged and heterozygous clonal cells.


Assuntos
Drosophila melanogaster , Genoma Mitocondrial , Animais , Linhagem Celular , Drosophila/genética , Drosophila melanogaster/genética , Haplótipos , Reprodução , Retroelementos/genética , Análise de Sequência de DNA
6.
Bioinformatics ; 37(21): 3932-3933, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34469515

RESUMO

SUMMARY: The Flexible Taxonomy Database framework provides a method for modification and merging official and custom taxonomic databases to create improved databases. Using such databases will increase accuracy and precision of existing methods to classify sequence reads. AVAILABILITY AND IMPLEMENTATION: Source code is freely available at https://github.com/FOI-Bioinformatics/flextaxd and installable through Bioconda.


Assuntos
Software , Bases de Dados Factuais
7.
PeerJ ; 8: e8424, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32025374

RESUMO

Microorganisms are essential constituents of ecosystems. To improve our understanding of how various factors shape microbial diversity and composition in nature it is important to study how microorganisms vary in space and time. Factors shaping microbial communities in ground level air have been surveyed in a limited number of studies, indicating that geographic location, season and local climate influence the microbial communities. However, few have surveyed more than one location, at high latitude or continuously over more than a year. We surveyed the airborne microbial communities over two full consecutive years in Kiruna, in the Arctic boreal zone, and Ljungbyhed, in the Southern nemoral zone of Sweden, by using a unique collection of archived air filters. We mapped both geographic and seasonal differences in bacterial and fungal communities and evaluated environmental factors that may contribute to these differences and found that location, season and weather influence the airborne communities. Location had stronger influence on the bacterial community composition compared to season, while location and season had equal influence on the fungal community composition. However, the airborne bacterial and fungal diversity showed overall the same trend over the seasons, regardless of location, with a peak during the warmer parts of the year, except for the fungal seasonal trend in Ljungbyhed, which fluctuated more within season. Interestingly, the diversity and evenness of the airborne communities were generally lower in Ljungbyhed. In addition, both bacterial and fungal communities varied significantly within and between locations, where orders like Rhizobiales, Rhodospirillales and Agaricales dominated in Kiruna, whereas Bacillales, Clostridiales and Sordariales dominated in Ljungbyhed. These differences are a likely reflection of the landscape surrounding the sampling sites where the landscape in Ljungbyhed is more homogenous and predominantly characterized by artificial and agricultural surroundings. Our results further indicate that local landscape, as well as seasonal variation, shapes microbial communities in air.

8.
Forensic Sci Int Genet ; 45: 102230, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31924594

RESUMO

Challenges of investigating a suspected bio attack include establishing if microorganisms have been cultured to produce attack material and to identify their source. Addressing both issues, we have investigated genetic variations that emerge during laboratory culturing of the bacterial pathogen Francisella tularensis. Key aims were to identify genetic variations that are characteristic of laboratory culturing and explore the possibility of using biological amplification to identify genetic variation present at exceedingly low frequencies in a source sample. We used parallel serial passage experiments and high-throughput sequencing of F. tularensis to explore the genetic variation. We found that during early laboratory culture passages of F. tularensis, gene duplications emerged in the pathogen genome followed by single-nucleotide polymorphisms in genes for bacterial capsule synthesis. Based on a biological enrichment scheme and the use of high-throughput sequencing, we identified genetic variation that likely pre-existed in a source sample. The results support that capsule synthesis gene mutations are common during laboratory culture, and that a biological amplification strategy is useful for linking a F. tularensis sample to a specific laboratory variant among many highly similar variants.


Assuntos
Técnicas Bacteriológicas , Francisella tularensis/genética , Mutação , Polimorfismo de Nucleotídeo Único , DNA Bacteriano/genética , Genoma Bacteriano , Sequenciamento de Nucleotídeos em Larga Escala
9.
J Comput Biol ; 27(8): 1313-1328, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31855461

RESUMO

Multiple transcription factors (TFs) bind to specific sites in the genome and interact among themselves to form the cis-regulatory modules (CRMs). They are essential in modulating the expression of genes, and it is important to study this interplay to understand gene regulation. In the present study, we integrated experimentally identified TF binding sites collected from published studies with computationally predicted TF binding sites to identify Drosophila CRMs. Along with the detection of the previously known CRMs, this approach identified novel protein combinations. We determined high-occupancy target sites, where a large number of TFs bind. Investigating these sites revealed that Giant, Dichaete, and Knirp are highly enriched in these locations. A common TAG team motif was observed at these sites, which might play a role in recruiting other TFs. While comparing the binding sites at distal and proximal promoters, we found that certain regulatory TFs, such as Zelda, were highly enriched in enhancers. Our study has shown that, from the information available concerning the TF binding sites, the real CRMs could be predicted accurately and efficiently. Although we only may claim co-occurrence of these proteins in this study, it may actually point to their interaction (as known interaction proteins typically co-occur together). Such an integrative approach can, therefore, help us to provide a better understanding of the interplay among the factors, even though further experimental verification is required.


Assuntos
Proteínas de Drosophila/genética , Proteínas Nucleares/genética , Proteínas Repressoras/genética , Fatores de Transcrição SOX/genética , Fatores de Transcrição/genética , Animais , Sítios de Ligação/genética , Biologia Computacional , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica/genética , Genoma de Inseto/genética , Elementos Reguladores de Transcrição , Sequências Reguladoras de Ácido Nucleico/genética , Software
10.
Forensic Sci Int ; 302: 109869, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31302416

RESUMO

A common objective in microbial forensic investigations is to identify the origin of a recovered pathogenic bacterium by DNA sequencing. However, there is currently no consensus about how degrees of belief in such origin hypotheses should be quantified, interpreted, and communicated to wider audiences. To fill this gap, we have developed a concept based on calculating probabilistic evidential values for microbial forensic hypotheses. The likelihood-ratio method underpinning this concept is widely used in other forensic fields, such as human DNA matching, where results are readily interpretable and have been successfully communicated in juridical hearings. The concept was applied to two case scenarios of interest in microbial forensics: (1) identifying source cultures among series of very similar cultures generated by parallel serial passage of the Tier 1 pathogen Francisella tularensis, and (2) finding the production facilities of strains isolated in a real disease outbreak caused by the human pathogen Listeria monocytogenes. Evidence values for the studied hypotheses were computed based on signatures derived from whole genome sequencing data, including deep-sequenced low-frequency variants and structural variants such as duplications and deletions acquired during serial passages. In the F. tularensis case study, we were able to correctly assign fictive evidence samples to the correct culture batches of origin on the basis of structural variant data. By setting up relevant hypotheses and using data on cultivated batch sources to define the reference populations under each hypothesis, evidential values could be calculated. The results show that extremely similar strains can be separated on the basis of amplified mutational patterns identified by high-throughput sequencing. In the L. monocytogenes scenario, analyses of whole genome sequence data conclusively assigned the clinical samples to specific sources of origin, and conclusions were formulated to facilitate communication of the findings. Taken together, these findings demonstrate the potential of using bacterial whole genome sequencing data, including data on both low frequency SNP signatures and structural variants, to calculate evidence values that facilitate interpretation and communication of the results. The concept could be applied in diverse scenarios, including both epidemiological and forensic source tracking of bacterial infectious disease outbreaks.


Assuntos
Busca de Comunicante/métodos , Francisella tularensis/genética , Genoma Bacteriano , Funções Verossimilhança , Listeria monocytogenes/genética , Sequenciamento Completo do Genoma , Surtos de Doenças , Doenças Transmitidas por Alimentos/microbiologia , Genética Forense/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Listeriose/epidemiologia , Filogenia , Polimorfismo de Nucleotídeo Único , Tularemia/epidemiologia
11.
Sci Rep ; 9(1): 6859, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-31048738

RESUMO

Several experiments show that the three dimensional (3D) organization of chromosomes affects genetic processes such as transcription and gene regulation. To better understand this connection, researchers developed the Hi-C method that is able to detect the pairwise physical contacts of all chromosomal loci. The Hi-C data show that chromosomes are composed of 3D compartments that range over a variety of scales. However, it is challenging to systematically detect these cross-scale structures. Most studies have therefore designed methods for specific scales to study foremost topologically associated domains (TADs) and A/B compartments. To go beyond this limitation, we tailor a network community detection method that finds communities in compact fractal globule polymer systems. Our method allows us to continuously scan through all scales with a single resolution parameter. We found: (i) polymer segments belonging to the same 3D community do not have to be in consecutive order along the polymer chain. In other words, several TADs may belong to the same 3D community. (ii) CTCF proteins-a loop-stabilizing protein that is ascribed a big role in TAD formation-are well correlated with community borders only at one level of organization. (iii) TADs and A/B compartments are traditionally treated as two weakly related 3D structures and detected with different algorithms. With our method, we detect both by simply adjusting the resolution parameter. We therefore argue that they represent two specific levels of a continuous spectrum 3D communities, rather than seeing them as different structural entities.


Assuntos
Cromossomos Humanos/genética , Algoritmos , Humanos , Modelos Teóricos
12.
Sci Rep ; 9(1): 4577, 2019 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-30872630

RESUMO

In specific cases, chromatin clearly forms long-range loops that place distant regulatory elements in close proximity to transcription start sites, but we have limited understanding of many loops identified by Chromosome Conformation Capture (such as Hi-C) analyses. In efforts to elucidate their characteristics and functions, we have identified highly interacting regions (HIRs) using intra-chromosomal Hi-C datasets with a new computational method based on looking at the eigenvector that corresponds to the smallest eigenvalue (here unity). Analysis of these regions using ENCODE data shows that they are in general enriched in bound factors involved in DNA damage repair and have actively transcribed genes. However, both highly transcribed regions as well as transcriptionally inactive regions can form HIRs. The results also indicate that enhancers and super-enhancers in particular form long-range interactions within the same chromosome. The accumulation of DNA repair factors in most identified HIRs suggests that protection from DNA damage in these regions is essential for avoidance of detrimental rearrangements.


Assuntos
Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Elementos Facilitadores Genéticos , Epistasia Genética , Genoma Humano , Genômica , Algoritmos , Cromatina/genética , Cromatina/metabolismo , Cromossomos/genética , Cromossomos/metabolismo , Regulação da Expressão Gênica , Genômica/métodos , Humanos , Modelos Biológicos , Ativação Transcricional
13.
Chromosoma ; 128(1): 15-20, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30357462

RESUMO

The 3D organisation of the genome in interphase cells is not a randomly folded polymer. Rather, experiments show that chromosomes arrange into a network of 3D compartments that correlate with biological processes, such as transcription, chromatin modifications and protein binding. However, these compartments do not exist during cell division when the DNA is condensed, and it is unclear how and when they emerge. In this paper, we focus on the early stages after cell division as the chromosomes start to decondense. We use a simple polymer model to understand the types of 3D structures that emerge from local unfolding of a compact initial state. From simulations, we recover 3D compartments, such as TADs and A/B compartments that are consistently detected in chromosome capture experiments across cell types and organisms. This suggests that the large-scale 3D organisation is a result of an inflation process.


Assuntos
Cromossomos/ultraestrutura , Genoma , Processamento de Imagem Assistida por Computador/estatística & dados numéricos , Imageamento Tridimensional/métodos , Simulação de Dinâmica Molecular , Animais , Montagem e Desmontagem da Cromatina , DNA/ultraestrutura , Humanos , Mitose
14.
Front Microbiol ; 9: 2364, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30356843

RESUMO

Microbial source tracking (MST) analysis is essential to identifying and mitigating the fecal pollution of water resources. The signature-based MST method uses a library of sequences to identify contaminants based on operational taxonomic units (OTUs) that are unique to a certain source. However, no clear guidelines for how to incorporate OTU overlap or natural variation in the raw water bacterial community into MST analyses exist. We investigated how the inclusion of bacterial overlap between sources in the library affects source prediction accuracy. To achieve this, large-scale sampling - including feces from seven species, raw sewage, and raw water samples from water treatment plants - was followed by 16S rRNA amplicon sequencing. The MST library was defined using three settings: (i) no raw water communities represented; (ii) raw water communities selected through clustering analysis; and (iii) local water communities collected across consecutive years. The results suggest that incorporating either the local background or representative bacterial composition improves MST analyses, as the results were positively correlated to measured levels of fecal indicator bacteria and the accuracy at which OTUs were assigned to the correct contamination source increased fourfold. Using the proportion of OTUs with high source origin probability, underpinning a contaminating signal, is a solid foundation in a framework for further deciphering and comparing contaminating signals derived in signature-based MST approaches. In conclusion, incorporating background bacterial composition of water in MST can improve mitigation efforts for minimizing the spread of pathogenic and antibiotic resistant bacteria into essential freshwater resources.

15.
FEBS Lett ; 592(24): 4078-4086, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30372516

RESUMO

Environmental perturbations induce transcriptional changes, some of which may be inherited even in the absence of the initial stimulus. Previous studies have focused on transfers through the germline although microbiota is also passed on to the offspring. Thus, we inspected the involvement of the gut microbiome in transgenerational inheritance of environmental exposures in Drosophila melanogaster. We grew flies in the cold versus control temperatures and compared their transcriptional patterns in both conditions as well as in their offspring. F2 flies grew in control temperature, while we controlled their microbiota acquisition from either F1 sets. Transcriptional status of some genes was conserved transgenerationally, and a subset of these genes, mainly expressed in the gut, was transcriptionally dependent on the acquired microbiome.


Assuntos
Adaptação Fisiológica/genética , Temperatura Baixa , Drosophila melanogaster/genética , Microbioma Gastrointestinal/genética , Padrões de Herança/genética , Animais , Drosophila melanogaster/microbiologia , Transplante de Microbiota Fecal , Fezes/microbiologia , Perfilação da Expressão Gênica , Masculino
16.
J Biol Chem ; 293(37): 14342-14358, 2018 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-30068546

RESUMO

Polycomb group proteins are essential epigenetic repressors. They form multiple protein complexes of which two kinds, PRC1 and PRC2, are indispensable for repression. Although much is known about their biochemical properties, how mammalian PRC1 and PRC2 are targeted to specific genes is poorly understood. Here, we establish the cyclin D2 (CCND2) oncogene as a simple model to address this question. We provide the evidence that the targeting of PRC1 to CCND2 involves a dedicated PRC1-targeting element (PTE). The PTE appears to act in concert with an adjacent cytosine-phosphate-guanine (CpG) island to arrange for the robust binding of PRC1 and PRC2 to repressed CCND2 Our findings pave the way to identify sequence-specific DNA-binding proteins implicated in the targeting of mammalian PRC1 complexes and provide novel link between polycomb repression and cancer.


Assuntos
Ciclina D2/genética , Ciclina D2/metabolismo , Oncogenes , Proteínas do Grupo Polycomb/metabolismo , Animais , Sítios de Ligação , Inativação Gênica , Humanos , Camundongos , Ligação Proteica , Transcrição Gênica
17.
Mol Cell ; 68(3): 491-503.e5, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29056321

RESUMO

Transcription activation involves RNA polymerase II (Pol II) recruitment and release from the promoter into productive elongation, but how specific chromatin regulators control these steps is unclear. Here, we identify a novel activity of the histone acetyltransferase p300/CREB-binding protein (CBP) in regulating promoter-proximal paused Pol II. We find that Drosophila CBP inhibition results in "dribbling" of Pol II from the pause site to positions further downstream but impedes transcription through the +1 nucleosome genome-wide. Promoters strongly occupied by CBP and GAGA factor have high levels of paused Pol II, a unique chromatin signature, and are highly expressed regardless of cell type. Interestingly, CBP activity is rate limiting for Pol II recruitment to these highly paused promoters through an interaction with TFIIB but for transit into elongation by histone acetylation at other genes. Thus, CBP directly stimulates both Pol II recruitment and the ability to traverse the first nucleosome, thereby promoting transcription of most genes.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimologia , Nucleossomos/enzimologia , Regiões Promotoras Genéticas , RNA Polimerase II/metabolismo , Fatores de Transcrição de p300-CBP/metabolismo , Acetilação , Animais , Linhagem Celular , Cromatina/genética , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento , Histonas/metabolismo , Nucleossomos/genética , Ligação Proteica , RNA Polimerase II/genética , Fator de Transcrição TFIIB/genética , Fator de Transcrição TFIIB/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Fatores de Transcrição de p300-CBP/genética
18.
Nucleic Acids Res ; 45(17): e152, 2017 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-28973466

RESUMO

Hi-C experiments generate data in form of large genome contact maps (Hi-C maps). These show that chromosomes are arranged in a hierarchy of three-dimensional compartments. But to understand how these compartments form and by how much they affect genetic processes such as gene regulation, biologists and bioinformaticians need efficient tools to visualize and analyze Hi-C data. However, this is technically challenging because these maps are big. In this paper, we remedied this problem, partly by implementing an efficient file format and developed the genome contact map explorer platform. Apart from tools to process Hi-C data, such as normalization methods and a programmable interface, we made a graphical interface that let users browse, scroll and zoom Hi-C maps to visually search for patterns in the Hi-C data. In the software, it is also possible to browse several maps simultaneously and plot related genomic data. The software is openly accessible to the scientific community.


Assuntos
Mapeamento Cromossômico/métodos , Marcadores Genéticos , Genoma Humano , Software , Linhagem Celular Tumoral , Mapeamento Cromossômico/estatística & dados numéricos , Gráficos por Computador , Humanos , Armazenamento e Recuperação da Informação , Células K562 , Linfócitos/metabolismo , Linfócitos/patologia
19.
Elife ; 62017 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-28327288

RESUMO

Mutations in human Atrophin1, a transcriptional corepressor, cause dentatorubral-pallidoluysian atrophy, a neurodegenerative disease. Drosophila Atrophin (Atro) mutants display many phenotypes, including neurodegeneration, segmentation, patterning and planar polarity defects. Despite Atro's critical role in development and disease, relatively little is known about Atro's binding partners and downstream targets. We present the first genomic analysis of Atro using ChIP-seq against endogenous Atro. ChIP-seq identified 1300 potential direct targets of Atro including engrailed, and components of the Dpp and Notch signaling pathways. We show that Atro regulates Dpp and Notch signaling in larval imaginal discs, at least partially via regulation of thickveins and fringe. In addition, bioinformatics analyses, sequential ChIP and coimmunoprecipitation experiments reveal that Atro interacts with the Drosophila GAGA Factor, Trithorax-like (Trl), and they bind to the same loci simultaneously. Phenotypic analyses of Trl and Atro clones suggest that Atro is required to modulate the transcription activation by Trl in larval imaginal discs. Taken together, these data indicate that Atro is a major Trl cofactor that functions to moderate developmental gene transcription.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Transdução de Sinais , Fatores de Transcrição/metabolismo , Animais , Imunoprecipitação da Cromatina , Mapeamento de Interação de Proteínas , Análise de Sequência de DNA
20.
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...