Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Eng Sci Med ; 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38805104

RESUMO

Motion management has become an integral part of radiation therapy. Multiple approaches to motion management have been reported in the literature. To allow the sharing of experiences on current practice and emerging technology, the University of Sydney and the New South Wales/Australian Capital Territory branch of the Australasian College of Physical Scientists and Engineers in Medicine (ACPSEM) held a two-day motion management workshop. To inform the workshop program, participants were invited to complete a survey prior to the workshop on current use of motion management techniques and their opinion on the effectiveness of each approach. A post-workshop survey was also conducted, designed to capture changes in opinion as a result of workshop participation. The online workshop was the most well attended ever hosted by the ACPSEM, with over 300 participants and a response to the pre-workshop survey was received from at least 60% of the radiation therapy centres in Australia and New Zealand. Motion management is extensively used in the region with use of deep inspiration breath-hold (DIBH) reported by 98% of centres for left-sided breast treatments and 91% for at least some right-sided breast treatments. Surface guided radiation therapy (SGRT) was the most popular session at the workshop and survey results showed that the use of SGRT is likely to increase. The workshop provided an excellent opportunity for the exchange of knowledge and experience, with most survey respondents indicating that their participation would lead to improvements in the quality of delivery of treatments at their centres.

2.
Phys Eng Sci Med ; 47(1): 327-337, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38236315

RESUMO

The myQA SRS (IBA) is a new to market 2D complementary metal oxide semiconductor detector array with an active area 140 × 120 mm2 and 0.4 mm resolution, making it a potential real-time dosimetry alternative to radiochromic film for stereotactic plan verification. Characterisation of the device was completed to assess performance. The dosimetric properties of the device were assessed for 6FF and 6FFF beams from a Varian TrueBeam STx with high definition multileaf collimator. Clinical suitability of the device for Patient Specific Quality Assurance was verified using ten SRS/SBRT plans, compared against other detectors, as well as multi leaf collimator (MLC) tests including picket fence and chair. Gamma analysis was performed using myQA software with criteria of 4%/1 mm. The device demonstrated compliance with recommended specifications for basic tests. After the required warm-up period, the maximum deviation in detector signal from initial readings was 0.2%. Short-term and long-term reproducibility was 0.1% (6FF) and 1.0% (6FFF), respectively. Dose linearity was within 0.3% (6FF) and 0.7% (6FFF) and dose-rate dependence within 1.7% (6FF) and 2.9% (6FFF) and were verified with a Farmer type ionization chamber (PTW 30013). Angular dependence was quantified for coplanar and non-coplanar situations. Output factors and beam profiles measured on the device showed agreement within 1% of baseline RAZOR diode (IBA) and CC04 ionisation chamber (IBA) measurements for field sizes 1 × 1 to 10 × 10 cm2. The minimum gamma (4%/1 mm) pass rates for MLC-pattern tests were 96.5% and 98.1% for the myQA SRS and film, respectively. The average gamma (4%/1 mm) pass rates for SBRT and SRS plans were 98.8% and 99.8% respectively. This work represents one of the first studies performed on the commissioning and performance characterisation of this novel device, demonstrating its accuracy and reliability, making it highly useful as a film alternative in stereotactic treatment plan verification.


Assuntos
Radiocirurgia , Humanos , Reprodutibilidade dos Testes , Radiometria , Óxidos , Software
3.
Phys Imaging Radiat Oncol ; 11: 76-81, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33458283

RESUMO

BACKGROUND AND PURPOSE: Functional avoidance radiation therapy (RT) aims at sparing functional lung regions. The purpose of this simulation study was to evaluate the feasibility of functional lung avoidance methodology in RT of lung cancer and to characterize the achievable dosimetry of single photon emission computed tomography (SPECT) guided treatment planning. MATERIALS AND METHODS: Fifteen consecutive lung cancer patients were included and planned for definitive RT of 60-66 Gy in 2-Gy fractions. Two plans were optimized: a standard CT-plan, and functional SPECT-plan. The objective was to reduce dose to the highly functional lung subvolumes without compromising tumour coverage, and respecting dose to other organs at risk. For each patient a 3D-conformal, intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy plans were created for standard and functional avoidance. Standard versus functional dose-volume parameters for functional lung (FL) subvolumes, organs at risk and tumour coverage were compared. RESULTS: The largest dose reduction was achieved with IMRT plans. Functional plans resulted in dose reduction from 9.0 Gy to 6.7 Gy (mean reduction of 2.3 Gy or 26%) to the highest functional subvolume FL80% (95%CI 1.1; 3.5). Dose to FL40% was reduced from 13.3 Gy to 11.6 Gy with functional planning. Dose reduction to FL40% was 1.7 Gy (95%CI 0.9; 2.6). Functional volume of lung receiving over 20 Gy improved by 5% (standard 22%, functional 17%). Dose to organs at risk and tumour coverage were not significantly different between plans. CONCLUSIONS: SPECT/CT-guided planning resulted in improved dose-volumetric outcomes for functional lung. This methodology may lead to potential reduction in radiation-induced lung toxicity.

5.
Phys Med Biol ; 60(14): N271-81, 2015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-26111099

RESUMO

Removal of the flattening filter alters the energy spectrum of the photon beam such that current beam quality specifiers may not correctly account for this change when predicting the Spencer-Attix restricted water-to-air mass collision stopping-power ratio, (L/ρ)(water)(air). Johnsson et al (2000 Phys. Med. Biol. 45 2733-45) proposed a beam quality specifier, known as the dual parameter beam quality specifier, which was calculated via Monte Carlo (MC) simulations using transmission data of primary kerma through two differing thicknesses of water material. Ceberg et al (2010 Med. Phys. 37 1164-8) extended this MC study to include relevant flattening filter free (FFF) beam data. Experimental investigations of this dual parameter beam quality specifier have not previously been published, therefore the purpose of this work was to validate that the dual parameter beam quality specifier could be measured experimentally for clinical beams (both with a flattening filter (WFF) and without (FFF)). Transmission measurements of primary kerma were performed by employing the setup outlined in Johnsson et al (1999 Phys. Med. Biol. 44 2445-50). Varying absorber thicknesses, in 5 cm increments from 5 to 40 cm, were placed at isocentre with the chamber positioned at an extended source to chamber distance of 300 cm. Experimental setup for TPR20,10 and %dd(10)x followed the methodology outlined in IAEA TRS398 (2004) and TG-51 (1999) with AAPM Addendum to TG-51 (2014) respectively. The maximum difference of (L/ρ)(water)(air) determined using the different beam quality specifiers was found to be 0.35%. Analysis of the absorber thickness combination found that small thicknesses (<10 cm) for the first absorber and absorbers similar in thickness (<10 cm) should be avoided. Stopping-power ratios of the beams investigated were determined using three different beam quality specifiers. The results demonstrated successful experimental determination of the dual parameter beam quality specifier, indicating its potential as an alternate beam quality specifier for FFF beams.


Assuntos
Algoritmos , Fótons , Radiometria/métodos , Método de Monte Carlo , Aceleradores de Partículas
6.
Australas Phys Eng Sci Med ; 36(4): 457-63, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24132584

RESUMO

This study assessed the accuracy of Eclipse™ (Varian Medical Systems, Palo Alto, CA, USA) treatment planning system (TPS) dose calculations when using virtual couch top models to account for couch presence in patient treatments. The Flat panel and Unipanel couch tops for the Varian Exact Couch were used in this study. Assigned Hounsfield unit (HU) for the virtual couch tops were varied and TPS calculated dose was compared to measured data to determine an optimal assigned HU. Air gaps of up to 10 cm were introduced between couch and phantom to assess the ability of the models to replicate dose in this situation, commonly seen clinically. Dose was measured at a range of depths, for each air gap thickness, in order to assess the model both near surface and at various depths beyond the dose maximum. Optimal HU was taken to be that which had the best agreement between measured and calculated dose over the range of gaps and depths tested. For the Flat panel couch top this was found to be -500 HU and for the Unipanel couch top, -200 HU. Default HU parameters originally set in the models was found to be not optimal for the whole range of depths studied. With optimal HU parameters set, there was good agreement between calculated and measured dose for depths greater than 0.5 cm, but discrepancies were still observed near surface. When implementing virtual couch top models, users could improve dose calculation accuracy by determining the optimal HU from comparisons over several clinical depths rather than a single depth.


Assuntos
Ar , Carbono/química , Modelos Teóricos , Planejamento da Radioterapia Assistida por Computador , Interface Usuário-Computador , Relação Dose-Resposta à Radiação , Humanos , Dosagem Radioterapêutica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...