Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 8(1): 14118, 2018 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-30237521

RESUMO

Several recent experiments have shown that long-range exchange interactions can determine collective magnetic ground states of nanostructures in bulk and on surfaces. The ability to generate and control entanglement in a system with long-range interaction will be of great importance for future quantum technology. An important step forward to reach this goal is the creation of entangled states for spins of distant magnetic atoms. Herein, the generation of long-distance entanglement between remote spins at large separations in bulk and on surface is studied theoretically, based on a quantum spin Hamiltonian and time-dependent Schrödinger equation for experimentally realized conditions. We demonstrate that long-distance entanglement can be generated between remote spins by using an appropriate quantum spin chain (a quantum mediator), composed by sets of antiferromagnetically coupled spin dimers. Ground state properties and quantum spin dynamics of entangled atoms are studied. We demonstrate that one can increase or suppress entanglement by adding a single spin in the mediator. The obtained result is explained by monogamy property of entanglement distribution inside a quantum spin system. We present a novel approach for non-local sensing of remote magnetic adatoms via spin entanglement.

2.
Sci Rep ; 7(1): 2759, 2017 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-28584280

RESUMO

Previous experimental studies discovered universal growth of chains and nanowires of various chemical elements on a corrugated molecular network of Cu3N on the Cu(110). Herein, performing combined ab initio and quantum Hamiltonian studies we demonstrate that such chains can be used for a fast spin switching and entanglement generation by locally applied magnetic pulses. As an example, we show that in antiferromagnetic Co chains a strong entanglement between ends of chains occurs during spin switching. A novel parity effect in spin dynamics is reported. Even-numbered chains are found to exhibit significantly faster spin switching than odd-numbered counterparts. Moreover, at certain parameters of the system the dimerization effect in the spin dynamics of the chains was found. Our studies give a clear evidence that tailoring spin dynamics and entanglement can be achieved by magnetic fields and by tuning exchange interactions in supported chains.

3.
Phys Chem Chem Phys ; 17(39): 26302-6, 2015 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-26387802

RESUMO

The possibility of using exchange interactions to manipulate the spin state of an antiferromagnetic nanostructure is explored using ab initio calculations. By considering M (M = Mn, Fe, Co) mono-atomic chains supported on Cu2N islands on a Cu(001) surface as a model system, it is demonstrated that two indistinguishable Néel states of an antiferromagnetic chain can be tailored into a preferred state by the exchange interaction with a magnetic STM tip. The magnitude and direction of the anisotropy for antiferromagnetic chains can also be tuned by exchange coupling upon varying the tip-chain separation.

4.
Sci Rep ; 5: 12847, 2015 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-26243639

RESUMO

We use scanning tunneling spectroscopy (STS) experiments and first-principles density functional theory (DFT) calculations to address a fundamental question of how quantum well (QW) states for electrons in a metal evolve spatially in the lateral direction when there is a surface step that changes the vertical confinement thickness. This study reveals a clear spatially dependent, nearly continuous trend in the energetic shifts of quantum well (QW) states of thin Ag(111) film grown on Cu(111) substrate, showing the strongest change near the step edge. A large energetic shift equaling up to ~200 meV with a lateral extension of the QW states of the order of ~20 Å is found, even though the step-edge is atomically sharp as evidenced by a line scan. The observed lateral extension and the nearly smooth transition of QW states are understood within the context of step-induced charge oscillation, and Smoluchowski-type charge spreading and smoothing.

5.
J Phys Chem Lett ; 6(18): 3698-701, 2015 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-26722744

RESUMO

Controllable switching an adatom position and its magnetization could lead to a single-atom memory. Our theoretical studies show that switching adatom between different surface sites by the quantum tunneling, discovered in several experiments, can be controlled by an external electric field. Switching a single spin by magnetic fields is found to be strongly site-dependent on a surface. This could enable to control a spin-dynamics of adatom.

6.
J Phys Condens Matter ; 26(44): 445005, 2014 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-25273916

RESUMO

State of the art ab initio calculations of the electronic and magnetic properties at the edges of magnetic nanostructures in an external electric field are presented in this paper. Our results for the Fe stripes on Fe(0 0 1) reveal the existence of spin-polarized edge states. A spatially inhomogeneous electronic structure is found at the edge. We demonstrate that the spin-dependent screening density varies greatly at the atomic scale. Tuning of the spin-polarization by the external electric field is demonstrated.

7.
J Phys Condens Matter ; 26(31): 315010, 2014 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-25018555

RESUMO

We show that quantum entanglement, nowadays so widely observed and used in a multitude of systems, can be traced in the atomic spins of metal clusters supported on metal surfaces. Most importantly, we show that it can be voluntarily altered with external electric fields. We use a combination of ab initio and model Heisenberg-Dirac-Van Vleck quantum spin Hamiltonian calculations to show, with the example of a prototype system (Mn dimers on Ag(0 0 1) surface), that, in an inherently unentangled system an electric field can 'switch on' the entanglement and significantly change its critical temperature parameter. The physical mechanism allowing such rigorous control of entanglement by an electric field is the field-induced change in the internal magnetic coupling of the supported nanostructure.

8.
J Phys Condens Matter ; 26(9): 093001, 2014 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-24523356

RESUMO

We review the state of the art of surface magnetic property control with non-magnetic means, concentrating on metallic surfaces and techniques such as charge-doping or external electric field (EEF) application. Magneto-electric coupling via EEF-based charge manipulation is discussed as a way to tailor single adatom spins, exchange interaction between adsorbates or anisotropies of layered systems. The mechanisms of paramagnetic and spin-dependent electric field screening and the effect thereof on surface magnetism are discussed in the framework of theoretical and experimental studies. The possibility to enhance the effect of EEF by immersing the target system into an electrolyte or ionic liquid is discussed by the example of substitutional impurities and metallic alloy multilayers. A similar physics is pointed out for the case of charge traps, metallic systems decoupled from a bulk electron bath. In that case the charging provides the charge carrier density changes necessary to affect the magnetic moments and anisotropies in the system. Finally, the option of using quasi-free electrons rather than localized atomic spins for surface magnetism control is discussed with the example of Shockley-type metallic surface states confined to magnetic nanoislands.

9.
Phys Rev Lett ; 107(18): 187201, 2011 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-22107667

RESUMO

We investigate the local tunnel magnetoresistance (TMR) effect within a single Co nanoisland using spin-polarized scanning tunneling microscopy. We observe a clear spatial modulation of the TMR ratio with an amplitude of ~20% and a spacing of ~1.3 nm between maxima and minima around the Fermi level. This result can be ascribed to a spatially modulated spin polarization within the Co island due to spin-dependent quantum interference. Our combined experimental and theoretical study reveals that spin-dependent electron confinement affects all transport properties such as differential conductance, conductance, and TMR. We demonstrate that the TMR within a nanostructured magnetic tunnel junction can be controlled on a length scale of 1 nm through spin-dependent quantum interference.

10.
Phys Rev Lett ; 101(21): 216802, 2008 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-19113436

RESUMO

Co single atom junctions on copper surfaces are studied by scanning tunneling microscopy and ab initio calculations. The Kondo temperature of single cobalt atoms on the Cu(111) surface has been measured at various tip-sample distances ranging from tunneling to the point contact regime. The experiments show a constant Kondo temperature for a whole range of tip-substrate distances consistently with the predicted energy position of the spin-polarized d levels of Co. This is in striking difference to experiments on Co/Cu(100) junctions, where a substantial increase of the Kondo temperature has been found. Our calculations reveal that the different behavior of the Co adatoms on the two Cu surfaces originates from the interplay between the structural relaxations and the electronic properties in the near-contact regime.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA