Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Sci Food Agric ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38661233

RESUMO

BACKGROUND: Wheat distillers' grains (WDG) and seaweeds are recommended as alternative protein sources and enteric methane mitigators in dairy cow diets, respectively, but little is known about their impact on milk quality and safety. In the present study, 16 cows in four 4 × 4 Latin squares were fed isonitrogenous diets (50:50 forage:concentrate ratio), with rapeseed meal (RSM)-based or WDG-based concentrate (230 and 205 g kg-1 dry matter) and supplemented with or without Saccharina latissima. RESULTS: Replacement of RSM with WDG enhanced milk nutritional profile by decreasing milk atherogenicity (P = 0.002) and thrombogenicity (P = 0.019) indices and the concentrations of the nutritionally undesirable saturated fatty acids - specifically, lauric (P = 0.045), myristic (P = 0.022) and palmitic (P = 0.007) acids. It also increased milk concentrations of the nutritionally beneficial vaccenic (P < 0.001), oleic (P = 0.030), linoleic (P < 0.001), rumenic (P < 0.001) and α-linolenic (P = 0.012) acids, and total monounsaturated (P = 0.044), polyunsaturated (P < 0.001) and n-6 (P < 0.001) fatty acids. Feeding Saccharina latissima at 35.7 g per cow per day did not affect the nutritionally relevant milk fatty acids or pose any risk on milk safety, as bromoform concentrations in milk were negligible and unaffected by the dietary treatments. However, it slightly reduced milk concentrations of pantothenate. CONCLUSION: Feeding WDG to dairy cows improved milk fatty acid profiles, by increasing the concentrations of nutritionally beneficial fatty acids and reducing the concentration of nutritionally undesirable saturated fatty acids, while feeding seaweed slightly reduced pantothenate concentrations. However, when considering the current average milk intakes in the population, the milk compositional differences between treatments in this study appear relatively small to have an effect on human health. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

2.
J Sci Food Agric ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38597303

RESUMO

BACKGROUND: Including seaweed in cattle feed has gained increased interest, but it is important to take into account that the concentration of toxic metals, especially arsenic, is high in seaweed. This study investigated the arsenic species in milk from seaweed-fed cows. RESULTS: Total arsenic in milk of control diets (9.3 ± 1.0 µg As kg-1, n = 4, dry mass) was significantly higher than seaweed-based diet (high-seaweed diet: 7.8 ± 0.4 µg As kg-1, P < 0.05, n = 4, dry mass; low-seaweed diet: 6.2 ± 1.0 µg As kg-1, P < 0.01, n = 4, dry mass). Arsenic speciation showed that the main species present were arsenobetaine (AB) and arsenate (As(V)) (37% and 24% of the total arsenic, respectively). Trace amounts of dimethylarsinic acid (DMA) and arsenocholine (AC) have also been detected in milk. Apart from arsenate being significantly lower (P < 0.001) in milk from seaweed-fed cows than in milk from the control group, other arsenic species showed no significant differences between groups. CONCLUSION: The lower total arsenic and arsenate in seaweed diet groups indicates a possible competition of uptake between arsenate and phosphate, and the presence of AC indicates that a reduction of AB occurred in the digestive tract. Feeding a seaweed blend (91% Ascophyllum nodosum and 9% Laminaria digitata) does not raise As-related safety concerns for milk. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

3.
Meat Sci ; 209: 109419, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38154372

RESUMO

Addressing health-related concerns linked to the metabolite profile of lamb meat has become paramount, in line with the growing demand for enhanced flavor and taste. We examined the impact of Perilla frutescens seeds on Tan lamb growth, carcass traits, and metabolite profiles. Three diets were employed: a low-concentrate group (LC), a high-concentrate group (HC), and a PFS group (the LC diet supplemented with 3% Perilla frutescens seeds) on a dry matter basis. Forty-five male Tan-lambs (approximately six months) with similar body weights (25.1 kg ± 1.12 SD) were randomly assigned to one of these three groups for 84-day feeding, including an initial 14-day adjustment phase. The supplementation of PFS resulted in increased average daily gain (P < 0.01) and improved carcass quality and meat color (P < 0.05). Additionally, it led to an enhancement in omega-3 polyunsaturated fatty acids (P < 0.05) and a reduction in the omega-6/omega-3 ratio (P < 0.05). Using gas chromatography-mass spectrometry, 369 volatile compounds were identified with enhanced levels of acetaldehyde and 1,2,4-trimethyl-benzene associated with PFS (P < 0.05). Among the 807 compounds identified by ultra-high performance liquid chromatography-mass spectrometry, there were 66 significantly differential compounds (P < 0.05), including 43 hydrophilic metabolites and 23 lipids. PFS supplementation led to significant alterations in 66 metabolites, with three metabolites including 2,5-diisopropyl-3-methylphenol, 3-hydroxydecanoic acid, and lysophosphatidylcholine (15:0) emerging as potential PFS-related biomarkers. The study indicates that PFS supplementation can enhance Tan-lamb growth, feed efficiency, and meat quality, potentially providing lamb meat with improved flavor and nutritional characteristics.


Assuntos
Perilla frutescens , Carne Vermelha , Animais , Masculino , Ração Animal/análise , Dieta/veterinária , Suplementos Nutricionais , Carne/análise , Carne Vermelha/análise , Ovinos , Carneiro Doméstico
4.
Front Vet Sci ; 10: 1200849, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37332741

RESUMO

Most dairy goat farms rear kids on ad libitum milk replacer; calf research suggests this improves growth and welfare, but solid feed intakes are problematic. Weaning can be gradual (incremental milk reduction) or abrupt (sudden, complete milk removal, which evidence suggests reduces welfare). Three treatments were created: abrupt weaning (AW: ad libitum milk until weaning) and gradual weaning [milk ad libitum until day 35, then milk unavailable 3.5 h/day until day 45 when milk removal was a 7 h/day block (gradual weaning 1: GW1) or two 3.5 h/day blocks (gradual weaning 2; GW2)]; complete milk removal occurred at day 56 for all. Experiment 1 investigated on-farm feasibility, behavior, and average daily gain (ADG). Experiment 2 investigated feed intakes, behavior, and ADG for AW and GW2. Experiment 1 had 261 kids (nine pens of 25-32), CCTV recorded 6 h/day, and group-level scan sampling recorded target behaviors. Kruskal-Wallis tests showed GW2 kids spent more time feeding on solids during weaning (p = 0.001) and displayed lower levels of 'frustrated suckling motivation' PostWean (p = 0.008). However, feeding competition differed PreWeaning (p = 0.007). ADG data from 159 female kids analyzed by a general linear model (fixed factor: treatment; covariate: day 34 weight) found GW2 had the highest ADG from day 35-45 (p ≤ 0.001) and no differences from day 45 to 56, and AW had the highest ADG PostWean (day 56-60). Experiment 2 had two AW pens (9 kids/pen) and two GW2 pens (8 and 9 kids/pen). A computerized feeder recorded milk intakes from day 22 to 56. Pen-level solid feed/water intakes were recorded from day 14-70. General linear models (fixed factor: treatment; covariate: PreWean value) found GW2 kids had higher ADG (p = 0.046) and lower milk intake (p = 0.032) from day 45-55, and PostWean (day 56-70) trended toward GW2 higher ADG (p = 0.074). Mann-Whitney U tests showed pen-level feed intake differences: AW had higher creep and straw throughout, GW2 showed higher creep during weaning (day 35-55), and higher water PostWean (>56 d). Behavioral observations suggest that gradually weaned kids may have enhanced welfare. Pen-level gradual weaning is feasible and, while weight gain results were mixed, it reduced milk intake, increased creep intake, and therefore combined with behavioral evidence can be recommended.

5.
Foods ; 12(8)2023 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-37107384

RESUMO

Interest in organic cows' milk has increased due to the perceived superior nutritional quality and improved sustainability and animal welfare. However, there is a lack of simultaneous assessments on the influence of organic dairy practices and dietary and breed drivers on productivity, feed efficiency, health parameters, and nutritional milk quality at the herd level. This work aimed to assess the impact of organic vs. conventional management and month on milk yield and basic composition, herd feed efficiency, health parameters, and milk fatty acid (FA) composition. Milk samples (n = 800) were collected monthly from the bulk tanks of 67 dairy farms (26 organic and 41 conventional) between January and December 2019. Data on breed and feeding practices were gathered via farm questionnaires. The samples were analyzed for their basic composition and FA profile using Fourier transform infrared spectroscopy (FTIR) and gas chromatography (GC), respectively. The data were analyzed using a linear mixed model, repeated measures design and multivariate redundancy analysis (RDA). The conventional farms had higher yields (kg/cow per day) of milk (+7.3 kg), fat (+0.27 kg), and protein (+0.25 kg) and higher contents (g/kg milk) of protein, casein, lactose, and urea. The conventional farms produced more milk (+0.22 kg), fat (+8.6 g), and protein (+8.1 g) per kg offered dry matter (DM). The organic farms produced more milk per kg of offered non-grazing and concentrate DM offered, respectively (+0.5 kg and +1.23 kg), and fat (+20.1 g and +51 g) and protein (+17 g and +42 g). The organic milk had a higher concentration of saturated fatty acid (SFA; +14 g/kg total FA), polyunsaturated fatty acid (PUFA; +2.4 g/kg total FA), and nutritionally beneficial FA alpha linolenic acid (ALNA; +14 g/kg total FA), rumenic acid (RA; +14 g/kg total FA), and eicosapentaenoic acid (EPA; +14 g/kg total FA); the conventional milk had higher concentrations of monounsaturated FA (MUFA; +16 g/kg total FA). Although the conventional farms were more efficient in converting the overall diet into milk, fat, and protein, the organic farms showed better efficiency in converting conserved forages and concentrates into milk, fat, and protein as a result of reduced concentrate feeding. Considering the relatively small differences in the FA profiles between the systems, increased pasture intake can benefit farm sustainability without negatively impacting consumer nutrition and health.

6.
Food Chem ; 418: 135809, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36963140

RESUMO

Based on previous farm-level studies, this study hypothesised that production system (conventional, CON; organic, ORG; channel island, CHA) and season would cause variation in the concentrations of macrominerals and trace elements in retail milk. On average, milk retained its status as an excellent source of Ca, P, I, and Mo across different demographics, and a very good source of K, Mg, and Zn for children. Compared with CON and ORG, CHA milk contained higher concentrations of Ca, Mg, P, Cu, Mn, and Zn; and lower concentrations of K and I. Macrominerals did not show a clear seasonal pattern but trace elements were all at lower concentrations during the typical grazing season. Variation in mineral concentrations can have implications to Ca and P supply in children, and I and Zn supply across different consumer demographics; while the seasonal variation was more pronounced than that associated with production system.


Assuntos
Oligoelementos , Animais , Feminino , Bovinos , Leite , Minerais , Estado Nutricional , Dieta
7.
Food Chem ; 403: 134315, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36183466

RESUMO

Sixteen multiparous Holstein cows in four blocks of 4 × 4 Latin square over 4-week experimental periods were used to study the effects of seaweed (Saccharina latissima) supplement (with/without) and protein source (rapeseed meal (RSM)/wheat distiller's grain (WDG)) on milk mineral concentrations. Dietary treatments did not affect milk production and basic composition. Feeding seaweed slightly decreased milk Ca and Cu concentrations; whilst increased (by 3.3-fold) milk iodine (I) concentration, due to a higher dietary I supply. Substitution of WDG with RSM increased feed-to-milk transfer of Ca, Na, and Se and decreased that of Mg, P, Fe, and Mn; but only reduced milk Mn and I concentrations (the latter by 27 % as a potential result of increased glucosinolate intake). Seaweed supplement can improve milk I content when cows' I supply/availability is limited, but care should be taken to avoid excess milk I contents that may pose nutritional risks for young children.


Assuntos
Brassica napus , Brassica rapa , Phaeophyceae , Alga Marinha , Feminino , Bovinos , Animais , Leite/metabolismo , Lactação , Ração Animal/análise , Dieta/veterinária , Suplementos Nutricionais , Grão Comestível , Verduras , Minerais/metabolismo
8.
Animals (Basel) ; 12(21)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36359121

RESUMO

Methane (CH4) emission from enteric fermentation of ruminant livestock is a source of greenhouse gases (GHG) and has become a significant concern for global warming. Enteric methane emission is also associated with poor feed efficiency. Therefore, research has focused on identifying dietary mitigation strategies to decrease CH4 emissions from ruminants. In recent years, plant-derived bioactive compounds have been investigated for their potential to reduce CH4 emissions from ruminant livestock. The organosulphur compounds of garlic have been observed to decrease CH4 emission and increase propionate concentration in anaerobic fermentations (in vitro) and in the rumen (in vivo). However, the mode of action of CH4 reduction is not completely clear, and the response in vivo is inconsistent. It might be affected by variations in the concentration and effect of individual substances in garlic. The composition of the diet that is being fed to the animal may also contribute to these differences. This review provides a summary of the effect of garlic and its bioactive compounds on CH4 emissions by ruminants. Additionally, this review aims to provide insight into garlic and its bioactive compounds in terms of enteric CH4 mitigation efficacy, consistency in afficacy, possible mode of action, and safety deriving data from both in vivo and in vitro studies.

9.
J Dairy Sci ; 105(11): 8866-8878, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36175232

RESUMO

Given the lack of research regarding the effect of microalgal supplementation in dairy cows on milk mineral concentrations, this study investigated the effect of feeding different protein supplements in dairy cow diets on milk, feces, and blood plasma mineral concentrations, associated milk and blood plasma transfer efficiencies, and apparent digestibility. Lactating Finnish Ayrshire cows (n = 8) were allocated at the start of the trial to 4 diets used in a replicated 4 × 4 Latin square design experiment: (1) control diet (CON), (2) a pelleted rapeseed supplement (RSS; 2,550 g/d), (3) a mixture of rapeseed and Spirulina platensis (RSAL; 1,280 g of RSS + 570 g of S. platensis per day), and (4) S. platensis (ALG; 1,130 g of S. platensis per day). In each of the 4 experimental periods, a 2-wk adaptation to the experimental diets was followed by a 7-d sampling and measurement period. Feed samples were composited per measurement period, milk, and feed samples (4 consecutive days; d 17-20), and blood plasma samples (d 21) were composited for each cow period (n = 32). Data were statistically analyzed using a linear mixed effects model with diet, period within square, square and their interaction as fixed factors, and cow within square as a random factor. Cows fed ALG were not significantly different in their milk or blood plasma mineral concentrations compared with CON, although feeding ALG increased fecal concentrations of macrominerals (Ca and Mg) and trace elements (Co, Cu, Fe, I, Mn, and Zn), and reduced their apparent digestibility, compared with CON. When compared with CON and ALG, milk from cows fed RSAL and RSS had lower milk I concentrations (-69.6 and -102.7 µg/kg of milk, respectively), but total plasma I concentrations were not affected significantly. Feeding S. platensis to dairy cows did not affect mineral concentrations in cows' blood or milk, but care should be taken when rapeseed is fed to avoid reducing milk I concentrations which may in turn reduce consumers' I intake from milk and dairy products.


Assuntos
Brassica napus , Brassica rapa , Microalgas , Oligoelementos , Feminino , Bovinos , Animais , Leite/metabolismo , Oligoelementos/metabolismo , Lactação , Finlândia , Dieta/veterinária , Ração Animal/análise , Rúmen/metabolismo
10.
Sci Rep ; 12(1): 7550, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35534492

RESUMO

Previous work has demonstrated some benefit from alternative breeds in low-input dairying, although there has been no systematic analysis of the simultaneous effect of Jersey crossbreeding on productivity, health, fertility parameters or milk nutritional quality. This work aimed to understand the effects of, and interactions/interrelations between, dairy cow genotypes (Holstein-Friesian (HF), Holstein-Friesian × Jersey crossbreds (HF × J)) and season (spring, summer, autumn) on milk yield; basic composition; feed efficiency, health, and fertility parameters; and milk fatty acid (FA) profiles. Milk samples (n = 219) and breed/diet data were collected from 74 cows in four UK low-input dairy farms between March and October 2012. HF × J cows produced milk with more fat (+ 3.2 g/kg milk), protein (+ 2.9 g/kg milk) and casein (+ 2.7 g/kg milk); and showed higher feed, fat, and protein efficiency (expressed as milk, fat and protein outputs per kg DMI) than HF cows. Milk from HF × J cows contained more C4:0 (+ 2.6 g/kg FA), C6:0 (+ 1.9 g/kg FA), C8:0 (+ 1.3 g/kg FA), C10:0 (+ 3.0 g/kg FA), C12:0 (+ 3.7 g/kg FA), C14:0 (+ 4.6 g/kg FA) and saturated FA (SFA; + 27.3 g/kg milk) and less monounsaturated FA (MUFA; -23.7 g/kg milk) and polyunsaturated FA (- 22.3 g/kg milk). There was no significant difference for most health and fertility parameters, but HF × J cows had shorter calving interval (by 39 days). The superior feed, fat and protein efficiency of HF × J cows, as well as shorter calving interval can be considered beneficial for the financial sustainability of low-input dairy farms; and using such alternative breeds in crossbreeding schemes may be recommended. Although statistically significant, it is difficult to determine if differences observed between HF and HF × J cows in fat composition are likely to impact human health, considering average population dairy fat intakes and the relatively small difference. Thus, the HF × J cow could be used in low-input dairying to improve efficiency and productivity without impacting milk nutritional properties.


Assuntos
Lactação , Leite , Ração Animal/análise , Animais , Bovinos , Indústria de Laticínios , Dieta/veterinária , Ácidos Graxos/metabolismo , Feminino , Fertilidade , Leite/química
11.
Foods ; 11(5)2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35267281

RESUMO

Livestock production is under increasing scrutiny as a component of the food supply chain with a large impact on greenhouse gas emissions. Amidst growing calls to reduce industrial ruminant production, there is room to consider differences in meat quality and nutritional benefits of organic and/or pasture-based management systems. Access to forage, whether fresh or conserved, is a key influencing factor for meat fatty acid profile, and there is increasing evidence that pasture access is particularly beneficial for meat's nutritional quality. These composition differences ultimately impact nutrient supply to consumers of conventional, organic and grass-fed meat. For this review, predicted fatty acid supply from three consumption scenarios were modelled: i. average UK population National Diet and Nutrition Survey (NDNS) (<128 g/week) red meat consumption, ii. red meat consumption suggested by the UK National Health Service (NHS) (<490 g/week) and iii. red meat consumption suggested by the Eat Lancet Report (<98 g/week). The results indicate average consumers would receive more of the beneficial fatty acids for human health (especially the essential omega-3, alpha-linolenic acid) from pasture-fed beef, produced either organically or conventionally.

12.
Foods ; 10(11)2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34829015

RESUMO

Thirty conventional and twenty-four organic dairy farms were divided into equal numbers within system groups: high-pasture, standard-pasture, and low-pasture groups. Milk samples were collected monthly for 12 consecutive months. Milk from high-pasture organic farms contained less fat and protein than standard- and low-pasture organic farms, but more lactose than low-pasture organic farms. Grazing, concentrate feed intake and the contribution of non-Holstein breeds were the key drivers for these changes. Milk Ca and P concentrations were lower in standard-pasture conventional farms than the other conventional groups. Milk from low-pasture organic farms contained less Ca than high- and standard-pasture organic farms, while high-pasture organic farms produced milk with the highest Sn concentration. Differences in mineral concentrations were driven by the contribution of non-Holstein breeds, feeding practices, and grazing activity; but due to their relatively low numerical differences between groups, the subsequent impact on consumers' dietary mineral intakes would be minor.

13.
Food Res Int ; 148: 110586, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34507731

RESUMO

The popularity of plant-based dairy alternatives (PBDAs) products has grown exponentially in recent years creating a new market of PBDA. The aim of this study was to compare the nutritional content of plant-based alternatives of milk, yogurt and cheese with dairy equivalents and the impact on nutritional intake across the lifespan when they are substituted into UK diets. Nutritional information from cow's milk, yogurt, cheese and PBDAs available on the UK market was collected via manufacturers information. The products were categorised according to primary plant-based ingredient/s and compared with the equivalent dairy product. The National Diet and Nutrition Survey data was used to calculate the intake of milk, yogurt and cheese across all age groups and the energy and nutrient intake was calculated. Plant-based milk, cheese and yogurt alternative categories were then substituted for dairy intakes, and energy and nutrient intakes were calculated and compared to UK Dietary Reference Values. A total of 299 PBDA products were identified consisting of 136 milk alternatives, 55 yogurt alternatives and 109 cheese alternatives. All PBDAs were more expensive than dairy products. Milk contained more energy, saturated fat, carbohydrates, protein, vitamin B2, vitamin B12 and iodine, and less fibre and free sugars, than plant-based milk alternatives (P < 0.05). There were significant differences between yogurt and cheese and their corresponding PBDAs for energy, fat, saturated fat, carbohydrate, sugars, fibre protein, salt, and calcium (P < 0.05). These differences were reflected in the nutrient intakes of different age groups and the results demonstrated that PBDA may be useful as practical replacements of dairy products but cannot be considered nutritional replacements.


Assuntos
Dieta , Ingestão de Alimentos , Animais , Bovinos , Feminino , Leite , Inquéritos Nutricionais , Reino Unido
14.
Foods ; 10(7)2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34359396

RESUMO

This study investigated the effect of seaweed supplementation in dairy cow diets on milk yield, basic composition, and mineral concentrations. Thirty-seven Icelandic cows were split into three diet treatments: control (CON, no seaweed), low seaweed (LSW, 0.75% concentrate dry matter (DM), 13-40 g/cow/day), and high seaweed (HSW, 1.5% concentrate DM, 26-158 g/cow/day). Cows were fed the same basal diet of grass silage and concentrate for a week, and then were introduced to the assigned experimental diets for 6 weeks. The seaweed mix of 91% Ascophyllum nodosum: 9% Laminaria digitata (DM basis), feed, and milk samples were collected weekly. Data were analyzed using a linear mixed effects model, with diet, week, and their interaction as fixed factors, cow ID as random factor, and the pre-treatment week data as a covariate. When compared with CON milk, LSW and HSW milk had, respectively, less Se (-1.4 and -3.1 µg/kg milk) and more I (+744 and +1649 µg/kg milk), while HSW milk also had less Cu (-11.6 µg/kg milk) and more As (+0.17 µg/kg milk) than CON milk. The minimal changes or concentrations in milk for Se, Cu, and As cannot be associated with any effects on consumer nutrition, but care should be taken when I-rich seaweed is fed to cows to avoid excessive animal I supply and milk I concentrations.

15.
J Environ Manage ; 295: 113074, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34214792

RESUMO

Accurately predicting nitrogen (N) outputs in manure, urine and faeces from beef cattle is crucial for the realistic assessment of the environmental footprint of beef production and the development of sustainable N mitigation strategies. This study aimed to develop and validate equations for N outputs in manure, urine and faeces for animals under diets with contrasting crude protein (CP) concentrations. Measurements from individual animals (n = 570), including bodyweight, feed intake and chemical composition, and N outputs were (i) analysed as a merged database and also (ii) split into three sub-sets, according to diet CP concentration (low CP, 84-143 g/kg dry matter, n = 190; medium CP, 144-162 g/kg dry matter, n = 190; high CP, 163-217 g/kg dry matter, n = 190). Prediction equations were developed and validated using residual maximum likelihood analysis and mean prediction error (MPE), respectively. In low CP diets the lowest MPE for N outputs in manure, urine and faeces was 0.244, 0.594 and 0.263, respectively; diet CP-specific equations improved accuracy in certain occasions, by 4.9% and 18.3% for manure N output and faeces N output respectively, while a reduction by 5.7% in the prediction accuracy for urinary N output was noticed. In medium CP diets the lowest MPE for N outputs in manure, urine and faeces was 0.227, 0.391 and 0.394, respectively; diet CP-specific equations improved accuracy by 13.2%, 41.2% and 16.8% respectively. In high CP diets the lowest MPE for N outputs in manure, urine and faeces was 0.120, 0.154 and 0.144, respectively; diet CP-specific equations improved accuracy in certain occasions by 5.8%, 9.1% and 6.3% respectively. This study demonstrated that for improved prediction accuracy of N outputs in manure, urine and faeces from beef cattle, the use of dietary CP concentration is essential while dietary starch, fat, and metabolisable energy concentrations can be used to further improve accuracy. In beef cattle fed low CP concentration diets, using diet CP-specific equations improves prediction accuracy when feed intake or dietary CP concentration are not known. However, in beef cattle fed medium or high CP concentration diets, using equations that have been developed from animals fed similar CP concentration diets, substantially improves the prediction accuracy of N outputs in manure, urine and faeces in most cases.


Assuntos
Esterco , Nitrogênio , Ração Animal/análise , Animais , Bovinos , Dieta/veterinária , Fezes/química , Feminino , Lactação , Leite/química , Nitrogênio/análise
16.
Food Chem ; 359: 129865, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33940467

RESUMO

To study the effects of dairy production system on milk macromineral and trace element concentrations, milk samples were collected monthly in 2019 from 43 conventional and 27 organic farms. Organic milk contained more Ca (1049.5 vs. 995.8 mg/kg), K (1383.6 vs. 1362.4 mg/kg), P (806.5 vs. 792.5 mg/kg) and Mo (73.3 vs. 60.6 µg/kg) but less Cu (52.4 vs. 60.6 µg/kg), Fe (0.66 vs 2.03 mg/kg), Mn (28.8 vs. 45.0 µg/kg), Zn (4.51 vs. 5.00 mg/kg) and Al (0.32 vs. 1.14 µg/kg) than conventional milk. Significant seasonal variation was observed in all determined minerals' concentrations. Milk I concentration was not consistently affected by production system, whereas organic milk contained less I in June and July than conventional milk. Dietary factors contributing to different milk mineral concentrations between production systems included intakes of maize silage, dry-straights and oils (higher in conventional diets), and pasture, clover and wholecrop (higher in organic diets).


Assuntos
Leite/química , Agricultura Orgânica , Oligoelementos/análise , Animais , Cálcio/análise , Dieta/veterinária , Feminino , Ferro/análise , Potássio/análise , Estações do Ano , Silagem , Trifolium , Zea mays
17.
Plant Methods ; 17(1): 14, 2021 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-33549101

RESUMO

BACKGROUND: The presence of condensed tannins (CT) in tree fodders entails a series of productive, health and ecological benefits for ruminant nutrition. Current wet analytical methods employed for full CT characterisation are time and resource-consuming, thus limiting its applicability for silvopastoral systems. The development of quick, safe and robust analytical techniques to monitor CT's full profile is crucial to suitably understand CT variability and biological activity, which would help to develop efficient evidence-based decision-making to maximise CT-derived benefits. The present study investigates the suitability of Fourier-transformed mid-infrared spectroscopy (MIR: 4000-550 cm-1) combined with multivariate analysis to determine CT concentration and structure (mean degree of polymerization-mDP, procyanidins:prodelphidins ratio-PC:PD and cis:trans ratio) in oak, field maple and goat willow foliage, using HCl:Butanol:Acetone:Iron (HBAI) and thiolysis-HPLC as reference methods. RESULTS: The MIR spectra obtained were explored firstly using Principal Component Analysis, whereas multivariate calibration models were developed based on partial least-squares regression. MIR showed an excellent prediction capacity for the determination of PC:PD [coefficient of determination for prediction (R2P) = 0.96; ratio of prediction to deviation (RPD) = 5.26, range error ratio (RER) = 14.1] and cis:trans ratio (R2P = 0.95; RPD = 4.24; RER = 13.3); modest for CT quantification (HBAI: R2P = 0.92; RPD = 3.71; RER = 13.1; Thiolysis: R2P = 0.88; RPD = 2.80; RER = 11.5); and weak for mDP (R2P = 0.66; RPD = 1.86; RER = 7.16). CONCLUSIONS: MIR combined with chemometrics allowed to characterize the full CT profile of tree foliage rapidly, which would help to assess better plant ecology variability and to improve the nutritional management of ruminant livestock.

18.
Front Vet Sci ; 7: 544149, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33195517

RESUMO

Low-input (LI) dairy farming, relying heavily on grazing, is increasing in popularity for perceived sustainability, welfare, and milk nutritional quality benefits. However, there is little research into the breed suitability for these systems. The popular Holstein-Friesians are not well-suited to LI production as, to achieve their potential high yields, they require high levels of concentrate intakes and veterinary inputs. Holstein-Friesians were traditionally bred for high milk yields, which often correlate negatively with functional traits, such as fertility and health. This drives the need for alternative breed choices, and UK dairy farmers use several crossbreeding practices. Additionally, classic measures of production efficiency (kilogram feed per liter of milk) are not the sole priority in LI systems, which also aim for improved health, fertility, forage conversion, and milk quality. This study aimed to explore the effect of breeding strategy on LI and organic production in dairy systems, collecting data from 17 farms throughout England and Wales: 7 organic and 10 low-input conventional systems with both purebred and crossbred cows from different breeds. Records from 1,070 cows were collected, including background data, health, fertility, breeding, and parity. Additionally, milk was analyzed on four occasions (autumn 2011 and winter, spring, and summer 2012). Principal components analysis was used to visualize the effect of management, Farm ID, and stage of lactation on LI production. The analysis clustered cows by Farm ID, showing that individual management practice on each farm had the greatest impact on various production traits. Cows were allocated a composite score based on their yield, health records, and milk fatty acid profile, and a linear mixed-effects model indicated (p < 0.01) that crossbred New Zealand Friesian cows scored highest, whereas Dairy Shorthorn cows scored the lowest. This paper highlights weaknesses in current breeding programs for LI and organic farms in the UK, in terms of the alignment of breeds with husbandry practices. Additional research is needed to explore any gene by environment interactions to meet the true potential of individual cows and certain breeds under LI and organic management.

19.
Meat Sci ; 162: 108037, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31901579

RESUMO

This study investigated the effect of including whole pomegranate by-product in lamb diet on meat oxidative stability. Seventeen lambs were assigned to two experimental treatments and fed a cereal-based concentrate (CON) or the same concentrate where 200 g/kg DM of cereals were replaced by whole pomegranate by-product (WPB). Meat from WPB-fed lambs had a greater concentration of vitamin E (α- and γ-tocopherols), polyunsaturated fatty acids (PUFA), highly peroxidizable PUFA and a higher peroxidability index (P < .05). Feeding WPB limited the formation of metmyoglobin (P = .05) and reduced lipid oxidation (TBARS values) after 7 days of storage for raw meat (P = .024) or 4 days for cooked meat (P = .006). Feeding WPB increased meat antioxidant capacity (ORAC assay) in the lipophilic fraction (P = .017), but not in the hydrophilic. These results suggest that vitamin E in the pomegranate by-product contributed to the higher antioxidant capacity of meat from the WPB-fed lambs.


Assuntos
Ração Animal/análise , Punica granatum , Carne Vermelha/análise , Carneiro Doméstico/fisiologia , Animais , Dieta/veterinária , Ácidos Graxos Insaturados/análise , Armazenamento de Alimentos , Masculino , Oxirredução , Substâncias Reativas com Ácido Tiobarbitúrico/análise , Vitamina E/análise
20.
Front Microbiol ; 11: 590441, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33552010

RESUMO

Milk products are an important component of human diets, with beneficial effects for human health, but also one of the major sources of nutritionally undesirable saturated fatty acids (SFA). Recent discoveries showing the importance of the rumen microbiome on dairy cattle health, metabolism and performance highlight that milk composition, and potentially milk SFA content, may also be associated with microorganisms, their genes and their activities. Understanding these mechanisms can be used for the development of cost-effective strategies for the production of milk with less SFA. This work aimed to compare the rumen microbiome between cows producing milk with contrasting FA profile and identify potentially responsible metabolic-related microbial mechanisms. Forty eight Holstein dairy cows were fed the same total mixed ration under the same housing conditions. Milk and rumen fluid samples were collected from all cows for the analysis of fatty acid profiles (by gas chromatography), the abundances of rumen microbiome communities and genes (by whole-genome-shotgun metagenomics), and rumen metabolome (using 500 MHz nuclear magnetic resonance). The following groups: (i) 24 High-SFA (66.9-74.4% total FA) vs. 24 Low-SFA (60.2-66.6%% total FA) cows, and (ii) 8 extreme High-SFA (69.9-74.4% total FA) vs. 8 extreme Low-SFA (60.2-64.0% total FA) were compared. Rumen of cows producing milk with more SFA were characterized by higher abundances of the lactic acid bacteria Lactobacillus, Leuconostoc, and Weissella, the acetogenic Proteobacteria Acetobacter and Kozakia, Mycobacterium, two fungi (Cutaneotrichosporon and Cyphellophora), and at a lesser extent Methanobrevibacter and the protist Nannochloropsis. Cows carrying genes correlated with milk FA also had higher concentrations of butyrate, propionate and tyrosine and lower concentrations of xanthine and hypoxanthine in the rumen. Abundances of rumen microbial genes were able to explain between 76 and 94% on the variation of the most abundant milk FA. Metagenomics and metabolomics analyses highlighted that cows producing milk with contrasting FA profile under the same diet, also differ in their rumen metabolic activities in relation to adaptation to reduced rumen pH, carbohydrate fermentation, and protein synthesis and metabolism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...