Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
eNeuro ; 11(2)2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38233144

RESUMO

Automated behavior quantification in socially interacting animals requires accurate tracking. While many methods have been very successful and highly generalizable to different settings, issues of mistaken identities and lost information on key anatomical features are common, although they can be alleviated by increased human effort in training or post-processing. We propose a markerless video-based tool to simultaneously track two interacting mice of the same appearance in controlled settings for quantifying behaviors such as different types of sniffing, touching, and locomotion to improve tracking accuracy under these settings without increased human effort. It incorporates conventional handcrafted tracking and deep-learning-based techniques. The tool is trained on a small number of manually annotated images from a basic experimental setup and outputs body masks and coordinates of the snout and tail-base for each mouse. The method was tested on several commonly used experimental conditions including bedding in the cage and fiberoptic or headstage implants on the mice. Results obtained without any human corrections after the automated analysis showed a near elimination of identities switches and a ∼15% improvement in tracking accuracy over pure deep-learning-based pose estimation tracking approaches. Our approach can be optionally ensembled with such techniques for further improvement. Finally, we demonstrated an application of this approach in studies of social behavior of mice by quantifying and comparing interactions between pairs of mice in which some lack olfaction. Together, these results suggest that our approach could be valuable for studying group behaviors in rodents, such as social interactions.


Assuntos
Algoritmos , Comportamento Social , Animais , Humanos , Roedores
2.
Nat Commun ; 14(1): 8522, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38129411

RESUMO

Recalling a salient experience provokes specific behaviors and changes in the physiology or internal state. Relatively little is known about how physiological memories are encoded. We examined the neural substrates of physiological memory by probing CRHPVN neurons of mice, which control the endocrine response to stress. Here we show these cells exhibit contextual memory following exposure to a stimulus with negative or positive valence. Specifically, a negative stimulus invokes a two-factor learning rule that favors an increase in the activity of weak cells during recall. In contrast, the contextual memory of positive valence relies on a one-factor rule to decrease activity of CRHPVN neurons. Finally, the aversive memory in CRHPVN neurons outlasts the behavioral response. These observations provide information about how specific physiological memories of aversive and appetitive experience are represented and demonstrate that behavioral readouts may not accurately reflect physiological changes invoked by the memory of salient experiences.


Assuntos
Hormônio Liberador da Corticotropina , Núcleo Hipotalâmico Paraventricular , Camundongos , Animais , Hormônio Liberador da Corticotropina/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Hipotálamo/metabolismo , Neurônios/metabolismo , Estresse Fisiológico
4.
Cereb Cortex Commun ; 2(1): tgaa096, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33615226

RESUMO

Dysfunction of nuclear distribution element-like 1 (Ndel1) is associated with schizophrenia, a neuropsychiatric disorder characterized by cognitive impairment and with seizures as comorbidity. The levels of Ndel1 are also altered in human and models with epilepsy, a chronic condition whose hallmark feature is the occurrence of spontaneous recurrent seizures and is typically associated with comorbid conditions including learning and memory deficits, anxiety, and depression. In this study, we analyzed the behaviors of mice postnatally deficient for Ndel1 in forebrain excitatory neurons (Ndel1 CKO) that exhibit spatial learning and memory deficits, seizures, and shortened lifespan. Ndel1 CKO mice underperformed in species-specific tasks, that is, the nest building, open field, Y maze, forced swim, and dry cylinder tasks. We surveyed the expression and/or activity of a dozen molecules related to Ndel1 functions and found changes that may contribute to the abnormal behaviors. Finally, we tested the impact of Reelin glycoprotein that shows protective effects in the hippocampus of Ndel1 CKO, on the performance of the mutant animals in the nest building task. Our study highlights the importance of Ndel1 in the manifestation of species-specific animal behaviors that may be relevant to our understanding of the clinical conditions shared between neuropsychiatric disorders and epilepsy.

5.
Curr Opin Neurobiol ; 68: 44-51, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33434768

RESUMO

Social interactions promote the communication of explicit and implicit information between individuals. Implicit or subconscious sharing of cues can be useful in conveying affective states. Knowing the affective state of others can guide future interactions, while an inability to decipher another's affective state is a core feature of autism spectrum disorder. The precise neural circuitry and mechanisms involved in communicating affective states are not well understood. Over the past few years, a number of important observations in rodent models have increased our knowledge of the neural processes for social communication of affective state. Here we highlight these contributions by first describing the rodent models used to investigate social communication of affect and then summarising the neural circuitry and processes implicated by these rodent models. We relate these findings to humans as well as to the current global context where social interactions have been modified by the Covid-19 pandemic.


Assuntos
Transtorno do Espectro Autista , COVID-19 , Comunicação , Humanos , Pandemias , SARS-CoV-2
6.
Pain ; 162(5): 1416-1425, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33230005

RESUMO

ABSTRACT: The development of new analgesic drugs has been hampered by the inability to translate preclinical findings to humans. This failure is due in part to the weak connection between commonly used pain outcome measures in rodents and the clinical symptoms of chronic pain. Most rodent studies rely on the use of experimenter-evoked measures of pain and assess behavior under ethologically unnatural conditions, which limits the translational potential of preclinical research. Here, we addressed this problem by conducting an unbiased, prospective study of behavioral changes in mice within a natural homecage environment using conventional preclinical pain assays. Unexpectedly, we observed that cage-lid hanging, a species-specific elective behavior, was the only homecage behavior reliably impacted by pain assays. Noxious stimuli reduced hanging behavior in an intensity-dependent manner, and the reduction in hanging could be restored by analgesics. Finally, we developed an automated approach to assess hanging behavior. Collectively, our results indicate that the depression of hanging behavior is a novel, ethologically valid, and translationally relevant pain outcome measure in mice that could facilitate the study of pain and analgesic development.


Assuntos
Comportamento Animal , Dor , Analgésicos/uso terapêutico , Animais , Camundongos , Dor/tratamento farmacológico , Medição da Dor , Estudos Prospectivos
7.
Nat Neurosci ; 23(3): 398-410, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32066984

RESUMO

In humans and rodents, the perception of control during stressful events has lasting behavioral consequences. These consequences are apparent even in situations that are distinct from the stress context, but how the brain links prior stressful experience to subsequent behaviors remains poorly understood. By assessing innate defensive behavior in a looming-shadow task, we show that the initiation of an escape response is preceded by an increase in the activity of corticotropin-releasing hormone (CRH) neurons in the paraventricular nucleus (PVN) of the hypothalamus (CRHPVN neurons). This anticipatory increase is sensitive to stressful stimuli that have high or low levels of outcome control. Specifically, experimental stress with high outcome control increases CRHPVN neuron anticipatory activity, which increases escape behavior in an unrelated context. By contrast, stress with no outcome control prevents the emergence of this anticipatory activity and decreases subsequent escape behavior. These observations indicate that CRHPVN neurons encode stress controllability and contribute to shifts between active and passive innate defensive strategies.


Assuntos
Hormônio Liberador da Corticotropina/fisiologia , Reação de Fuga/fisiologia , Neurônios/fisiologia , Núcleo Hipotalâmico Paraventricular/fisiologia , Estresse Psicológico , Acelerometria , Animais , Antecipação Psicológica/fisiologia , Sinais (Psicologia) , Fenômenos Eletrofisiológicos , Elevação dos Membros Posteriores , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Optogenética , Núcleo Hipotalâmico Paraventricular/citologia , Estimulação Luminosa
9.
Nat Neurosci ; 21(3): 393-403, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29311741

RESUMO

Stress can trigger enduring changes in neural circuits and synapses. The behavioral and hormonal consequences of stress can also be transmitted to others, but whether this transmitted stress has similar effects on synapses is not known. We found that authentic stress and transmitted stress in mice primed paraventricular nucleus of the hypothalamus (PVN) corticotropin-releasing hormone (CRH) neurons, enabling the induction of metaplasticity at glutamate synapses. In female mice that were subjected to authentic stress, this metaplasticity was diminished following interactions with a naive partner. Transmission from the stressed subject to the naive partner required the activation of PVN CRH neurons in both subject and partner to drive and detect the release of a putative alarm pheromone from the stressed mouse. Finally, metaplasticity could be transmitted sequentially from the stressed subject to multiple partners. Our findings demonstrate that transmitted stress has the same lasting effects on glutamate synapses as authentic stress and reveal an unexpected role for PVN CRH neurons in transmitting distress signals among individuals.


Assuntos
Comportamento Social , Estresse Psicológico/fisiopatologia , Estresse Psicológico/psicologia , Sinapses , Animais , Hormônio Liberador da Corticotropina/fisiologia , Feminino , Glutamatos/fisiologia , Masculino , Camundongos , Plasticidade Neuronal/fisiologia , Optogenética , Núcleo Hipotalâmico Paraventricular/fisiopatologia , Técnicas de Patch-Clamp , Feromônios/farmacologia , Receptores de Hormônio Liberador da Corticotropina/fisiologia , Caracteres Sexuais
10.
Elife ; 52016 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-27725087

RESUMO

Many species use social networks to buffer the effects of stress. The mere absence of a social network, however, may also be stressful. We examined neuroendocrine, PVN CRH neurons and report that social isolation alters the intrinsic properties of these cells in sexually dimorphic fashion. Specifically, isolating preadolescent female mice from littermates for <24 hr increased first spike latency (FSL) and decreased excitability of CRH neurons. These changes were not evident in age-matched males. By contrast, subjecting either males (isolated or grouped) or group housed females to acute physical stress (swim), increased FSL. The increase in FSL following either social isolation or acute physical stress was blocked by the glucocorticoid synthesis inhibitor, metyrapone and mimicked by exogenous corticosterone. The increase in FSL results in a decrease in the excitability of CRH neurons. Our observations demonstrate that social isolation, but not acute physical stress has sex-specific effects on PVN CRH neurons.


Assuntos
Hormônio Liberador da Corticotropina/metabolismo , Neurônios/fisiologia , Núcleo Hipotalâmico Paraventricular/fisiologia , Isolamento Social , Potenciais de Ação , Animais , Camundongos , Fatores Sexuais
11.
Brain Res ; 1641(Pt B): 291-305, 2016 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-26612520

RESUMO

While genetic predisposition is a major factor, it is not known how development of attention-deficit/hyperactivity disorder (ADHD) is modulated by early life stress. The spontaneously hypertensive rat (SHR) displays the behavioral characteristics of ADHD (poorly sustained attention, impulsivity, hyperactivity) and is the most widely studied genetic model of ADHD. We have previously shown that SHR have disturbances in the noradrenergic system and that the early life stress of maternal separation failed to produce anxiety-like behavior in SHR, contrary to control Sprague-Dawley and Wistar-Kyoto (WKY) who showed typical anxiety-like behavior in later life. In the present study we investigated the effect of maternal separation on approach behavior (response to a novel object in a familiar environment) in preadolescent SHR and WKY. We also investigated whether maternal separation altered GABAA and NMDA receptor-mediated regulation of norepinephrine release in preadolescent SHR and WKY hippocampus. We found that female SHR, similar to male SHR, exhibited greater exploratory activity than WKY. Maternal separation significantly increased GABAA receptor-mediated inhibition of glutamate-stimulated release of norepinephrine in male and female SHR hippocampus but had no significant effect in WKY. Maternal separation had opposite effects on NMDA receptor-mediated inhibition of norepinephrine release in SHR and WKY hippocampus, as it increased inhibition of both glutamate-stimulated and depolarization-evoked release in SHR hippocampus but not in WKY. The results of the present study show that noradrenergic function is similarly altered by the early life stress of maternal separation in male and female SHR, while GABA- and glutamate-regulation of norepinephrine release remained unaffected by maternal separation in the control, WKY, rat strain. This article is part of a Special Issue entitled SI: Noradrenergic System.


Assuntos
Privação Materna , Norepinefrina/metabolismo , Ratos Endogâmicos SHR/metabolismo , Ratos Endogâmicos WKY/metabolismo , Especificidade da Espécie , Estresse Psicológico/metabolismo , Animais , Bicuculina/farmacologia , Modelos Animais de Doenças , Maleato de Dizocilpina/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Feminino , Antagonistas de Receptores de GABA-A/farmacologia , Predisposição Genética para Doença , Ácido Glutâmico/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Potássio/metabolismo , Distribuição Aleatória , Receptores de GABA-A/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
12.
Metab Brain Dis ; 31(1): 169-82, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26464063

RESUMO

Attention-deficit/hyperactivity disorder (ADHD) is one of the most common child psychiatric disorders. While it is typically treated with medications that target dopamine and norepinephrine transmission, there is increasing evidence that other neurotransmitter systems, such as glutamate and GABA, may be involved. The aetiology of ADHD is unknown; however, there is evidence that early life stress may contribute to the development of the disorder. In the present study we used proteomic analysis (iTRAQ) followed by sodium dodecyl sulfate polyacrylamide gel electrophoresis and Western blot analysis to investigate hippocampal protein profiles of three rat strains: an animal model of ADHD, spontaneously hypertensive rats (SHR), their control Wistar-Kyoto rats (WKY), and Sprague-Dawley rats (SD). We additionally investigated how these protein profiles are affected by maternal separation, a model of early life stress. Our findings show that solute carrier family 12 member 5 (KCC2) is increased in SHR hippocampus. The glutamate transporter GLT1 splice variant, GLT1b, was increased (proteomic analysis) while total GLT1 (comprised mostly of GLT1a splice variant) was reduced (Western blot analysis) in SHR hippocampus, compared to WKY and SD--a pattern that is consistent with elevated extracellular glutamate levels. Maternal separation increased total GLT1 in hippocampi of SHR, WKY, and SD, and reduced GLT1b in SHR hippocampus. Together these findings provide evidence for disturbed glutamatergic and GABAergic transmission in SHR hippocampus, maternal separation effects on glutamate uptake in hippocampi of all three strains, as well a unique effect of maternal separation on GLT1b levels in SHR hippocampus. These data suggest significant involvement of glutamatergic and GABAergic transmission in the neuropathophysiology of ADHD, and implicates changes in glutamatergic transmission as a result of early life stress.


Assuntos
Transportador 2 de Aminoácido Excitatório/genética , Hipocampo/metabolismo , Acontecimentos que Mudam a Vida , Simportadores/genética , Animais , Feminino , Lateralidade Funcional , Masculino , Privação Materna , Proteômica , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Ratos Sprague-Dawley , Especificidade da Espécie , Tubulina (Proteína)/metabolismo , Cotransportadores de K e Cl-
13.
J Mol Neurosci ; 56(3): 696-707, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25665550

RESUMO

Attention deficit hyperactivity disorder (ADHD) is a heterogeneous behavioural disorder that affects 3-15 % of children worldwide. Spontaneously hypertensive rats (SHR) display the major symptoms of ADHD (hyperactivity, impulsivity and poor performance in tasks that require sustained attention) and are widely used to model the disorder. The present study aimed to test the hypothesis that SHR have a diminished capacity to generate ATP required for rapid synchronized neuronal firing, failure of which might lead to disturbances in neurotransmission that could contribute to their ADHD-like behaviour. Duplicate pooled (n = 5) samples of prefrontal cortex and striatum of prepubertal (35-day-old) SHR and Wistar Kyoto (WKY) rats were subjected to iTRAQ labeling and matrix-assisted laser desorption/ionization tandem mass spectrometry (MALDI-MS/MS). The MS/MS spectra were analyzed with ProteinPilot using the Ratus ratus database. Proteins detected with >95 % confidence were tested. SHR had decreased levels of several proteins involved in energy metabolism, cytoskeletal structure, myelination and neurotransmitter function when compared to WKY. Differences in protein levels between SHR and WKY were similar in prefrontal cortex and striatum, suggesting global changes in cortico-striato-thalamo-cortical circuits.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/metabolismo , Corpo Estriado/metabolismo , Dopamina/metabolismo , Metabolismo Energético , Ácido Glutâmico/metabolismo , Córtex Pré-Frontal/metabolismo , Proteoma/metabolismo , Animais , Ratos , Ratos Endogâmicos SHR , Ratos Wistar , Transmissão Sináptica
14.
Brain Res ; 1572: 1-10, 2014 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-24833064

RESUMO

Attention-deficit/hyperactivity disorder (ADHD) is a heterogeneous, developmental disorder, and is one of the most common child-psychiatric disorders. It is also a risk factor for early smoking and adult nicotine dependence. Nicotine has been shown to improve symptoms associated with ADHD, including problems with attention, working memory and response inhibition. Norepinephrine, a neurotransmitter involved in attention, is highly implicated in ADHD, and often targeted in the treatment thereof. In the present study we investigated nicotine׳s effect on release of norepinephrine in the hippocampus of a validated rat model of ADHD, the spontaneously hypertensive rat (SHR), as well as in two control strains: Wistar-Kyoto rats (WKY) and Sprague-Dawley rats (SD). Hippocampal slices obtained from male SHR, WKY and SD (postnatal day 31-33) were pre-incubated with radioactively labelled norepinephrine ([3H]NE) and perfused with buffer. The slices were stimulated by exposure to different concentrations of nicotine (1, 10, 100 or 1000 µM) for 1 min at 2 intervals (S1 and S2, separated by 20 min). Following a 10 min wash, slices were stimulated with 25 mM potassium. Since glutamate and GABA receptor function differ in SHR and WKY, we investigated the possible involvement of AMPA and GABA(A) receptors in nicotine (100 µM)-stimulated release of hippocampal [3H]NE in each of the strains by blocking these receptors with CNQX (AMPA receptor antagonist, 10 µM) or bicuculline (GABAA receptor antagonist, 30 µM) respectively. Nicotine-stimulated release (S1) of [3H]NE from SHR hippocampal slices was less than that of WKY and SD, at 100 µM and 1000 µM nicotine, suggesting reduced density and/or function of nicotinic receptors in SHR hippocampus. Nicotine-stimulated release of [3H]NE in response to S2 was reduced compared to S1 in all strains, indicating desensitization of receptors involved in stimulation of [3H]NE by nicotine. Potassium-stimulated release of [3H]NE following the nicotine stimulations (S1 and S2) was elevated in SHR hippocampal slices compared to that of WKY and SD, agreeing with the hypothesis that SHR have reduced negative feedback inhibition by α2-adrenoceptors on varicosities of locus coeruleus-norepinephrine neurons. Blocking AMPA receptors with CNQX had no effect on nicotine-stimulated release of [3H]NE in any of the strains. In WKY, nicotine-stimulated release of [3H]NE was reduced by the GABAA receptor antagonist, bicuculline. We conclude that reduced nicotinic receptor activity, and reduced involvement of GABA(A) receptors in nicotine receptor activity, may be part of ADHD neuropathology.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Norepinefrina/metabolismo , Animais , Modelos Animais de Doenças , Masculino , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Ratos Sprague-Dawley , Receptores de AMPA/metabolismo , Receptores de GABA-A/metabolismo , Especificidade da Espécie , Trítio/administração & dosagem
15.
Brain Res ; 1541: 52-60, 2013 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-24161405

RESUMO

Recent studies have investigated the role of γ-aminobutyric acid (GABA) in the behavioural symptoms of attention-deficit/hyperactivity disorder (ADHD), specifically in behavioural disinhibition. Spontaneously hypertensive rats (SHR) are widely accepted as an animal model of ADHD, displaying core symptoms of the disorder. Using an in vitro superfusion technique, we have shown that glutamate-stimulated release of radio-actively labelled norepinephrine ([(3)H]NE) from prefrontal cortex and hippocampal slices is greater in SHR than in their normotensive control strain, Wistar-Kyoto rats (WKY), and/or a standard control strain, Sprague-Dawley rats (SD). In the present study, we investigated how the level of extracellular (tonic) GABA affects release of [(3)H]NE in hippocampal slices of male and female SHR, WKY and SD rats, in response to 3 glutamate stimulations (S1, S2, and S3). The hippocampal slices were prelabelled with [(3)H]NE and superfused with buffer containing 0µM, 1µM, 10µM, or 100µM GABA. Three consecutive glutamate stimulations were achieved by exposing slices to 3 pulses of glutamate (1mM), each separated by 10min. Increasing tonic levels of GABA increased basal and stimulated release of [(3)H]NE in all strains. When GABA was omitted from the superfusion buffer used to perfuse SHR hippocampal slices, but present at 100µM in the buffer used to perfuse WKY and SD hippocampal slices, glutamate-stimulated release of [(3)H]NE was similar in all three strains. In these conditions, the decrease in [(3)H]NE release from S1 to S2 and S3 was also similar in all three strains. These findings suggest that extracellular concentrations of GABA may be reduced in SHR hippocampus, in vivo, compared to WKY and SD. An underlying defect in GABA function may be at the root of the dysfunction in catecholamine transmission noted in SHR, and may underlie their ADHD-like behaviours.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/metabolismo , Hipocampo/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Ácido Glutâmico/farmacologia , Masculino , Norepinefrina/metabolismo , Técnicas de Cultura de Órgãos , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Ratos Sprague-Dawley
16.
Brain Res ; 1497: 23-31, 2013 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-23276497

RESUMO

Experiencing early life stress increases the risk of developing a psychiatric disorder later in life, possibly by altering neural networks, such as the locus-coeruleus norepinephrine (LC-NE) system. Whether early life stress affects the LC-NE system directly, or whether the effects are via changes in glutamate and GABA modulation of the LC-NE system, is unclear. Early life stress has been shown to alter glutamate and GABA transmission, and in particular, to alter GABA(A) receptor expression. The LC-NE system has been implicated in attention-deficit/hyperactivity disorder (ADHD), amongst other disorders, and is over-responsive to glutamate stimulation in a validated rat model of ADHD, the spontaneously hypertensive rat (SHR). It is plausible that the LC-NE system, or glutamate and GABA modulation thereof, in an individual already genetically predisposed to develop ADHD, or in SHR, may respond in a unique way to early life stress. To investigate this we applied a mild developmental stressor, maternal separation, onto SHR, and onto their control strain, Wistar-Kyoto rats (WKY), from post-natal day (P)2-14. On P50-52, in early adulthood, we assayed glutamate and potassium stimulated release of radio-actively labelled NE ((3)[H]NE) from hippocampal slices using an in vitro superfusion technique, in the presence or absence of a GABA(A) receptor antagonist, bicuculline. Our results show that maternal separation altered GABA(A) receptor-mediated modulation of NE release in the hippocampus of the two strains in opposite directions, increasing it in SHR and decreasing it in WKY. Our findings indicate that effects of early life stress are highly dependent on genetic predisposition, since opposite changes in GABA(A) receptor-mediated modulation of NE release were observed in the rat model of ADHD, SHR, and their control strain, WKY.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/patologia , Regulação da Expressão Gênica/fisiologia , Hipocampo/metabolismo , Privação Materna , Norepinefrina/metabolismo , Receptores de GABA-A/metabolismo , Fatores Etários , Análise de Variância , Animais , Animais Recém-Nascidos , Bicuculina/farmacologia , Modelos Animais de Doenças , Antagonistas de Receptores de GABA-A/farmacologia , Ácido Glutâmico/farmacologia , Locus Cerúleo/metabolismo , Masculino , Cloreto de Potássio/farmacologia , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Trítio/metabolismo
17.
Brain Res ; 1467: 91-103, 2012 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-22658977

RESUMO

The spontaneously hypertensive rat (SHR) is the most widely used animal model of ADHD. SHR has been found to have increased glutamate-stimulated noradrenaline release from varicosities in several brain areas. Besides its effects on dopamine D4 receptors, clozapine, an atypical antipsychotic with antagonistic effects on α(1)-adrenoceptors, may reduce activation of α(1)-adrenoceptors in SHR and thereby attenuate their hyperactivity. The aims of the study were to determine the effect of clozapine (post-natal day (P) 21-P35, 10 mg/kg/day) on SHR and Wistar-Kyoto (WKY), SHR's normotensive control, and a standard laboratory strain, Sprague Dawley (SD). Rat behaviour was assessed in the open field (P32), novel object (P33) and elevated plus maze (P34) tests that measured locomotor and anxiety-related behaviour. An in vitro superfusion technique was used to measure [(3)H]noradrenaline release in prefrontal cortex (PFC) and hippocampal slices (P35 or P36). Clozapine decreased exploratory activity in WKY, consistent with antagonism of dopamine D4 and α(1)-adrenoceptors reducing the behavioural response to novelty. Clozapine also increased anxiety-related behaviour of WKY. However, clozapine did not affect SHR, suggesting that genetic predisposition may play a role in determining clozapine's behavioural effects. WKY have been shown to have higher levels of dopamine D4 receptor expression in the PFC than SHR, which may be a reason for their elevated response to clozapine. SHR released more [(3)H]noradrenaline from PFC and hippocampal slices in response to glutamate- and elevated potassium-stimulation, compared to WKY and SD rats. However clozapine treatment did not affect glutamate-, GABA- or depolarization-evoked release of [(3)H]noradrenaline.


Assuntos
Antipsicóticos/farmacologia , Ansiedade/induzido quimicamente , Ansiedade/psicologia , Transtorno do Deficit de Atenção com Hiperatividade/psicologia , Comportamento Animal/efeitos dos fármacos , Clozapina/farmacologia , Comportamento Exploratório/efeitos dos fármacos , Análise de Variância , Animais , Antipsicóticos/administração & dosagem , Clozapina/administração & dosagem , Ácido Glutâmico/farmacologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Injeções Intraperitoneais , Masculino , Atividade Motora/efeitos dos fármacos , Norepinefrina/metabolismo , Potássio/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Ácido gama-Aminobutírico/farmacologia
18.
Behav Brain Funct ; 7: 11, 2011 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-21548935

RESUMO

BACKGROUND: Trauma experienced early in life increases the risk of developing a number of psychological and/or behavioural disorders. It is unclear, however, how genetic predisposition to a behavioural disorder, such as attention-deficit/hyperactivity disorder (ADHD), modifies the long-term effects of early life trauma. There is substantial evidence from family and twin studies for susceptibility to ADHD being inherited, implying a strong genetic component to the disorder. In the present study we used an inbred animal model of ADHD, the spontaneously hypertensive rat (SHR), to investigate the long-term consequences of early life trauma on emotional behaviour in individuals predisposed to developing ADHD-like behaviour. METHODS: We applied a rodent model of early life trauma, maternal separation, to SHR and Wistar-Kyoto rats (WKY), the normotensive control strain from which SHR were originally derived. The effects of maternal separation (removal of pups from dam for 3 h/day during the first 2 weeks of life) on anxiety-like behaviour (elevated-plus maze) and depressive-like behaviour (forced swim test) were assessed in prepubescent rats (postnatal day 28 and 31). Basal levels of plasma corticosterone were measured using radioimmunoassay. RESULTS: The effect of maternal separation on SHR and WKY differed in a number of behavioural measures. Similar to its reported effect in other rat strains, maternal separation increased the anxiety-like behaviour of WKY (decreased open arm entries) but not SHR. Maternal separation increased the activity of SHR in the novel environment of the elevated plus-maze, while it decreased that of WKY. Overall, SHR showed a more active response in the elevated plus-maze and forced swim test than WKY, regardless of treatment, and were also found to have higher basal plasma corticosterone compared to WKY. Maternal separation increased basal levels of plasma corticosterone in SHR females only, possibly through adaptive mechanisms involved in maintaining their active response in behavioural tests. Basal plasma corticosterone was found to correlate positively with an active response to a novel environment and inescapable stress across all rats. CONCLUSION: SHR are resilient to the anxiogenic effects of maternal separation, and develop a non-anxious, active response to a novel environment following chronic mild stress during the early stages of development. Our findings highlight the importance of genetic predisposition in determining the outcome of early life adversity. SHR may provide a model of early life trauma leading to the development of hyperactivity rather than anxiety and depression. Basal levels of corticosterone correlate with the behavioural response to early life trauma, and may therefore provide a useful marker for susceptibility to a certain behavioural temperament.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/psicologia , Predisposição Genética para Doença/psicologia , Privação Materna , Animais , Ansiedade/sangue , Ansiedade/genética , Ansiedade/psicologia , Transtorno do Deficit de Atenção com Hiperatividade/sangue , Transtorno do Deficit de Atenção com Hiperatividade/genética , Corticosterona/metabolismo , Modelos Animais de Doenças , Feminino , Masculino , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Caracteres Sexuais , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...