Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell ; 187(10): 2574-2594.e23, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38729112

RESUMO

High-resolution electron microscopy of nervous systems has enabled the reconstruction of synaptic connectomes. However, we do not know the synaptic sign for each connection (i.e., whether a connection is excitatory or inhibitory), which is implied by the released transmitter. We demonstrate that artificial neural networks can predict transmitter types for presynapses from electron micrographs: a network trained to predict six transmitters (acetylcholine, glutamate, GABA, serotonin, dopamine, octopamine) achieves an accuracy of 87% for individual synapses, 94% for neurons, and 91% for known cell types across a D. melanogaster whole brain. We visualize the ultrastructural features used for prediction, discovering subtle but significant differences between transmitter phenotypes. We also analyze transmitter distributions across the brain and find that neurons that develop together largely express only one fast-acting transmitter (acetylcholine, glutamate, or GABA). We hope that our publicly available predictions act as an accelerant for neuroscientific hypothesis generation for the fly.


Assuntos
Encéfalo , Drosophila melanogaster , Microscopia Eletrônica , Neurônios , Neurotransmissores , Sinapses , Animais , Drosophila melanogaster/ultraestrutura , Drosophila melanogaster/metabolismo , Neurotransmissores/metabolismo , Sinapses/ultraestrutura , Sinapses/metabolismo , Microscopia Eletrônica/métodos , Encéfalo/ultraestrutura , Encéfalo/metabolismo , Neurônios/metabolismo , Neurônios/ultraestrutura , Redes Neurais de Computação , Conectoma , Ácido gama-Aminobutírico/metabolismo
2.
bioRxiv ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-37547019

RESUMO

Brains comprise complex networks of neurons and connections. Network analysis applied to the wiring diagrams of brains can offer insights into how brains support computations and regulate information flow. The completion of the first whole-brain connectome of an adult Drosophila, the largest connectome to date, containing 130,000 neurons and millions of connections, offers an unprecedented opportunity to analyze its network properties and topological features. To gain insights into local connectivity, we computed the prevalence of two- and three-node network motifs, examined their strengths and neurotransmitter compositions, and compared these topological metrics with wiring diagrams of other animals. We discovered that the network of the fly brain displays rich club organization, with a large population (30% percent of the connectome) of highly connected neurons. We identified subsets of rich club neurons that may serve as integrators or broadcasters of signals. Finally, we examined subnetworks based on 78 anatomically defined brain regions or neuropils. These data products are shared within the FlyWire Codex and will serve as a foundation for models and experiments exploring the relationship between neural activity and anatomical structure.

3.
bioRxiv ; 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-37961285

RESUMO

A long-standing goal of neuroscience is to obtain a causal model of the nervous system. This would allow neuroscientists to explain animal behavior in terms of the dynamic interactions between neurons. The recently reported whole-brain fly connectome [1-7] specifies the synaptic paths by which neurons can affect each other but not whether, or how, they do affect each other in vivo. To overcome this limitation, we introduce a novel combined experimental and statistical strategy for efficiently learning a causal model of the fly brain, which we refer to as the "effectome". Specifically, we propose an estimator for a dynamical systems model of the fly brain that uses stochastic optogenetic perturbation data to accurately estimate causal effects and the connectome as a prior to drastically improve estimation efficiency. We then analyze the connectome to propose circuits that have the greatest total effect on the dynamics of the fly nervous system. We discover that, fortunately, the dominant circuits significantly involve only relatively small populations of neurons-thus imaging, stimulation, and neuronal identification are feasible. Intriguingly, we find that this approach also re-discovers known circuits and generates testable hypotheses about their dynamics. Overall, our analyses of the connectome provide evidence that global dynamics of the fly brain are generated by a large collection of small and often anatomically localized circuits operating, largely, independently of each other. This in turn implies that a causal model of a brain, a principal goal of systems neuroscience, can be feasibly obtained in the fly.

4.
bioRxiv ; 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37873160

RESUMO

A catalog of neuronal cell types has often been called a "parts list" of the brain, and regarded as a prerequisite for understanding brain function. In the optic lobe of Drosophila, rules of connectivity between cell types have already proven essential for understanding fly vision. Here we analyze the fly connectome to complete the list of cell types intrinsic to the optic lobe, as well as the rules governing their connectivity. We more than double the list of known types. Most new cell types contain between 10 and 100 cells, and integrate information over medium distances in the visual field. Some existing type families (transmedullary, lobula intrinsic, and lobula plate intrinsic) at least double in number of types, with implications for perception of color, motion, and form. We introduce a new family, serpentine medulla intrinsic, which has more types than any other, and three new families of types that span multiple neuropils. We demonstrate self-consistency of our cell types through automatic assignment of cells by distance in high-dimensional feature space, and provide further validation by selection of small subsets of discriminative features. Our work showcases the advantages of connectomic cell typing: complete and unbiased sampling, a rich array of features based on connectivity, and reduction of the connectome to a drastically simpler wiring diagram of cell types, with immediate relevance for brain function and development.

5.
bioRxiv ; 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37425808

RESUMO

The fruit fly Drosophila melanogaster combines surprisingly sophisticated behaviour with a highly tractable nervous system. A large part of the fly's success as a model organism in modern neuroscience stems from the concentration of collaboratively generated molecular genetic and digital resources. As presented in our FlyWire companion paper 1 , this now includes the first full brain connectome of an adult animal. Here we report the systematic and hierarchical annotation of this ~130,000-neuron connectome including neuronal classes, cell types and developmental units (hemilineages). This enables any researcher to navigate this huge dataset and find systems and neurons of interest, linked to the literature through the Virtual Fly Brain database 2 . Crucially, this resource includes 4,552 cell types. 3,094 are rigorous consensus validations of cell types previously proposed in the hemibrain connectome 3 . In addition, we propose 1,458 new cell types, arising mostly from the fact that the FlyWire connectome spans the whole brain, whereas the hemibrain derives from a subvolume. Comparison of FlyWire and the hemibrain showed that cell type counts and strong connections were largely stable, but connection weights were surprisingly variable within and across animals. Further analysis defined simple heuristics for connectome interpretation: connections stronger than 10 unitary synapses or providing >1% of the input to a target cell are highly conserved. Some cell types showed increased variability across connectomes: the most common cell type in the mushroom body, required for learning and memory, is almost twice as numerous in FlyWire as the hemibrain. We find evidence for functional homeostasis through adjustments of the absolute amount of excitatory input while maintaining the excitation-inhibition ratio. Finally, and surprisingly, about one third of the cell types proposed in the hemibrain connectome could not yet be reliably identified in the FlyWire connectome. We therefore suggest that cell types should be defined to be robust to inter-individual variation, namely as groups of cells that are quantitatively more similar to cells in a different brain than to any other cell in the same brain. Joint analysis of the FlyWire and hemibrain connectomes demonstrates the viability and utility of this new definition. Our work defines a consensus cell type atlas for the fly brain and provides both an intellectual framework and open source toolchain for brain-scale comparative connectomics.

6.
bioRxiv ; 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37425937

RESUMO

Connections between neurons can be mapped by acquiring and analyzing electron microscopic (EM) brain images. In recent years, this approach has been applied to chunks of brains to reconstruct local connectivity maps that are highly informative, yet inadequate for understanding brain function more globally. Here, we present the first neuronal wiring diagram of a whole adult brain, containing 5×107 chemical synapses between ~130,000 neurons reconstructed from a female Drosophila melanogaster. The resource also incorporates annotations of cell classes and types, nerves, hemilineages, and predictions of neurotransmitter identities. Data products are available by download, programmatic access, and interactive browsing and made interoperable with other fly data resources. We show how to derive a projectome, a map of projections between regions, from the connectome. We demonstrate the tracing of synaptic pathways and the analysis of information flow from inputs (sensory and ascending neurons) to outputs (motor, endocrine, and descending neurons), across both hemispheres, and between the central brain and the optic lobes. Tracing from a subset of photoreceptors all the way to descending motor pathways illustrates how structure can uncover putative circuit mechanisms underlying sensorimotor behaviors. The technologies and open ecosystem of the FlyWire Consortium set the stage for future large-scale connectome projects in other species.

7.
Curr Biol ; 33(11): 2340-2349.e3, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37236180

RESUMO

Neuronal wiring diagrams reconstructed by electron microscopy1,2,3,4,5 pose new questions about the organization of nervous systems following the time-honored tradition of cross-species comparisons.6,7 The C. elegans connectome has been conceptualized as a sensorimotor circuit that is approximately feedforward,8,9,10,11 starting from sensory neurons proceeding to interneurons and ending with motor neurons. Overrepresentation of a 3-cell motif often known as the "feedforward loop" has provided further evidence for feedforwardness.10,12 Here, we contrast with another sensorimotor wiring diagram that was recently reconstructed from a larval zebrafish brainstem.13 We show that the 3-cycle, another 3-cell motif, is highly overrepresented in the oculomotor module of this wiring diagram. This is a first for any neuronal wiring diagram reconstructed by electron microscopy, whether invertebrate12,14 or mammalian.15,16,17 The 3-cycle of cells is "aligned" with a 3-cycle of neuronal groups in a stochastic block model (SBM)18 of the oculomotor module. However, the cellular cycles exhibit more specificity than can be explained by the group cycles-recurrence to the same neuron is surprisingly common. Cyclic structure could be relevant for theories of oculomotor function that depend on recurrent connectivity. The cyclic structure coexists with the classic vestibulo-ocular reflex arc for horizontal eye movements,19 and could be relevant for recurrent network models of temporal integration by the oculomotor system.20,21.


Assuntos
Caenorhabditis elegans , Peixe-Zebra , Animais , Peixe-Zebra/fisiologia , Caenorhabditis elegans/fisiologia , Interneurônios/fisiologia , Neurônios Motores/fisiologia , Movimentos Oculares , Mamíferos
8.
bioRxiv ; 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37205514

RESUMO

The forthcoming assembly of the adult Drosophila melanogaster central brain connectome, containing over 125,000 neurons and 50 million synaptic connections, provides a template for examining sensory processing throughout the brain. Here, we create a leaky integrate-and-fire computational model of the entire Drosophila brain, based on neural connectivity and neurotransmitter identity, to study circuit properties of feeding and grooming behaviors. We show that activation of sugar-sensing or water-sensing gustatory neurons in the computational model accurately predicts neurons that respond to tastes and are required for feeding initiation. Computational activation of neurons in the feeding region of the Drosophila brain predicts those that elicit motor neuron firing, a testable hypothesis that we validate by optogenetic activation and behavioral studies. Moreover, computational activation of different classes of gustatory neurons makes accurate predictions of how multiple taste modalities interact, providing circuit-level insight into aversive and appetitive taste processing. Our computational model predicts that the sugar and water pathways form a partially shared appetitive feeding initiation pathway, which our calcium imaging and behavioral experiments confirm. Additionally, we applied this model to mechanosensory circuits and found that computational activation of mechanosensory neurons predicts activation of a small set of neurons comprising the antennal grooming circuit that do not overlap with gustatory circuits, and accurately describes the circuit response upon activation of different mechanosensory subtypes. Our results demonstrate that modeling brain circuits purely from connectivity and predicted neurotransmitter identity generates experimentally testable hypotheses and can accurately describe complete sensorimotor transformations.

9.
Nat Methods ; 19(1): 119-128, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34949809

RESUMO

Due to advances in automated image acquisition and analysis, whole-brain connectomes with 100,000 or more neurons are on the horizon. Proofreading of whole-brain automated reconstructions will require many person-years of effort, due to the huge volumes of data involved. Here we present FlyWire, an online community for proofreading neural circuits in a Drosophila melanogaster brain and explain how its computational and social structures are organized to scale up to whole-brain connectomics. Browser-based three-dimensional interactive segmentation by collaborative editing of a spatially chunked supervoxel graph makes it possible to distribute proofreading to individuals located virtually anywhere in the world. Information in the edit history is programmatically accessible for a variety of uses such as estimating proofreading accuracy or building incentive systems. An open community accelerates proofreading by recruiting more participants and accelerates scientific discovery by requiring information sharing. We demonstrate how FlyWire enables circuit analysis by reconstructing and analyzing the connectome of mechanosensory neurons.


Assuntos
Encéfalo/fisiologia , Conectoma/métodos , Drosophila melanogaster/fisiologia , Imageamento Tridimensional/métodos , Software , Animais , Encéfalo/citologia , Encéfalo/diagnóstico por imagem , Gráficos por Computador , Visualização de Dados , Drosophila melanogaster/citologia , Neurônios/citologia , Neurônios/fisiologia
10.
PLoS Pathog ; 16(4): e1008310, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32240270

RESUMO

Enterococci are robust gram-positive bacteria that are found in a variety of surroundings and that cause a significant number of healthcare-associated infections. The genus possesses a high-efficiency pheromone-responsive plasmid (PRP) transfer system for genetic exchange that allows antimicrobial-resistance determinants to spread within bacterial populations. The pCF10 plasmid system is the best characterised, and although other PRP systems are structurally similar, they lack exact functional homologues of pCF10-encoded genes. In this review, we provide an overview of the enterococcal PRP systems, incorporating functional details for the less-well-defined systems. We catalogue the virulence-associated elements of the PRPs that have been identified to date, and we argue that this reinforces the requirement for elucidation of the less studied systems.


Assuntos
Proteínas de Bactérias/genética , DNA Bacteriano/genética , Farmacorresistência Bacteriana/genética , Enterococcus faecalis/genética , Infecções por Bactérias Gram-Positivas/microbiologia , Feromônios/fisiologia , Plasmídeos/genética , Animais , Conjugação Genética , Humanos , Virulência
11.
FDG ; 20182018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30465045

RESUMO

Scientific software is often developed with professional scientists in mind, resulting in complex tools with a steep learning curve. Citizen science games, however, are designed for citizen scientists- members of the general public. These games maintain scientific accuracy while placing design goals such as usability and enjoyment at the forefront. In this paper, we identify an emerging use of game-based technology, in the repurposing of citizen science games to be software tools for professional scientists in their work. We discuss our experience in two such repurposings: Foldit, a protein folding and design game, and Eyewire, a web-based 3D neuron reconstruction game. Based on this experience, we provide evidence that the software artifacts produced for citizen science can be useful for professional scientists, and provide an overview of key design principles we found to be useful in the process of repurposing.

12.
Cell ; 173(5): 1293-1306.e19, 2018 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-29775596

RESUMO

When 3D electron microscopy and calcium imaging are used to investigate the structure and function of neural circuits, the resulting datasets pose new challenges of visualization and interpretation. Here, we present a new kind of digital resource that encompasses almost 400 ganglion cells from a single patch of mouse retina. An online "museum" provides a 3D interactive view of each cell's anatomy, as well as graphs of its visual responses. The resource reveals two aspects of the retina's inner plexiform layer: an arbor segregation principle governing structure along the light axis and a density conservation principle governing structure in the tangential plane. Structure is related to visual function; ganglion cells with arbors near the layer of ganglion cell somas are more sustained in their visual responses on average. Our methods are potentially applicable to dense maps of neuronal anatomy and physiology in other parts of the nervous system.


Assuntos
Museus , Células Ganglionares da Retina/fisiologia , Algoritmos , Humanos , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...