Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
medRxiv ; 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38585976

RESUMO

The conventional intracarotid amobarbital (Wada) test has been used to assess memory function in patients being considered for temporal lobe epilepsy (TLE) surgery. Minimally invasive approaches that target the medial temporal lobe (MTL) and spare neocortex are increasingly used, but a knowledge gap remains in how to assess memory and language risk from these procedures. We retrospectively compared results of two versions of the Wada test, the intracarotid artery (ICA-Wada) and posterior cerebral artery (PCA-Wada) approaches, with respect to predicting subsequent memory and language outcomes, particularly after stereotactic laser amygdalohippocampotomy (SLAH). We included all patients being considered for SLAH who underwent both ICA-Wada and PCA-Wada at a single institution. Memory and confrontation naming assessments were conducted using standardized neuropsychological tests to assess pre- to post-surgical changes in cognitive performance. Of 13 patients who initially failed the ICA-Wada, only one patient subsequently failed the PCA-Wada (p=0.003, two-sided binomial test with p 0 =0.5) demonstrating that these tests assess different brain regions or networks. PCA-Wada had a high negative predictive value for the safety of SLAH, compared to ICA-Wada, as none of the patients who underwent SLAH after passing the PCA-Wada experienced catastrophic memory decline (0 of 9 subjects, p <.004, two-sided binomial test with p 0 =0.5), and all experienced a good cognitive outcome. In contrast, the single patient who received a left anterior temporal lobectomy after failed ICA- and passed PCA-Wada experienced a persistent, near catastrophic memory decline. On confrontation naming, few patients exhibited disturbance during the PCA-Wada. Following surgery, SLAH patients showed no naming decline, while open resection patients, whose surgeries all included ipsilateral temporal lobe neocortex, experienced significant naming difficulties (Fisher's exact test, p <.05). These findings demonstrate that (1) failing the ICA-Wada falsely predicts memory decline following SLAH, (2) PCA-Wada better predicts good memory outcomes of SLAH for MTLE, and (3) the MTL brain structures affected by both PCA-Wada and SLAH are not directly involved in language processing.

3.
Neurophotonics ; 11(2): 024202, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38274784

RESUMO

Significance: Intravital cellular calcium imaging has emerged as a powerful tool to investigate how different types of neurons interact at the microcircuit level to produce seizure activity, with newfound potential to understand epilepsy. Although many methods exist to measure seizure-related activity in traditional electrophysiology, few yet exist for calcium imaging. Aim: To demonstrate an automated algorithmic framework to detect seizure-related events using calcium imaging-including the detection of pre-ictal spike events, propagation of the seizure wavefront, and terminal spreading waves for both population-level activity and that of individual cells. Approach: We developed an algorithm for precise recruitment detection of population and individual cells during seizure-associated events, which broadly leverages averaged population activity and high-magnitude slope features to detect single-cell pre-ictal spike and seizure recruitment. We applied this method to data recorded using awake in vivo two-photon calcium imaging during pentylenetetrazol-induced seizures in mice. Results: We demonstrate that our detected recruitment times are concordant with visually identified labels provided by an expert reviewer and are sufficiently accurate to model the spatiotemporal progression of seizure-associated traveling waves. Conclusions: Our algorithm enables accurate cell recruitment detection and will serve as a useful tool for researchers investigating seizure dynamics using calcium imaging.

4.
bioRxiv ; 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37808822

RESUMO

Significance: Genetic cellular calcium imaging has emerged as a powerful tool to investigate how different types of neurons interact at the microcircuit level to produce seizure activity, with newfound potential to understand epilepsy. Although many methods exist to measure seizure-related activity in traditional electrophysiology, few yet exist for calcium imaging. Aim: To demonstrate an automated algorithmic framework to detect seizure-related events using calcium imaging - including the detection of pre-ictal spike events, propagation of the seizure wavefront, and terminal spreading waves for both population-level activity and that of individual cells. Approach: We developed an algorithm for precise recruitment detection of population and individual cells during seizure-associated events, which broadly leverages averaged population activity and high-magnitude slope features to detect single-cell pre-ictal spike and seizure recruitment. We applied this method to data recorded using awake in vivo two-photon calcium imaging during pentylenetetrazol induced seizures in mice. Results: We demonstrate that our detected recruitment times are concordant with visually identified labels provided by an expert reviewer and are sufficiently accurate to model the spatiotemporal progression of seizure-associated traveling waves. Conclusions: Our algorithm enables accurate cell recruitment detection and will serve as a useful tool for researchers investigating seizure dynamics using calcium imaging.

5.
Methods Mol Biol ; 2525: 333-346, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35836081

RESUMO

Manipulation of neural activity in genetically predefined populations of neurons through genetic techniques is an essential tool in the field of neuroscience as well as a potential avenue in treating a vast assortment of neurological and psychiatric diseases. Here, we describe an emerging methodology of molecular neuromodulation termed bioluminescence-optogenetics (BL-OG) where BL is harnessed to activate bacterial light-driven channels and pumps expressed in neurons to control their activity. BL-OG is realized through opsin-luciferase fusion proteins called luminopsins (LMOs). In this chapter, we will provide a practical guide for applying BL-OG and LMOs in vitro using a cell line and primary cells in culture. In the following chapter, we will turn our focus towards BL-OG applications in ex vivo and in vivo rodent models of the nervous system.


Assuntos
Luz , Optogenética , Luciferases/genética , Luciferases/metabolismo , Neurônios/metabolismo , Opsinas/genética , Opsinas/metabolismo , Optogenética/métodos
6.
Methods Mol Biol ; 2525: 347-363, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35836082

RESUMO

In the preceding chapter, we introduced bioluminescence-optogenetics (BL-OG) and luminopsin fusion proteins (LMOs), an emerging method of molecular neuromodulation. In addition to reviewing the fundamental principles of BL-OG, we provided a discussion of its application in vitro, including with cell lines and primary cells in culture in vitro. BL-OG is mediated by an easily diffusible molecule, luciferin, and when applied systemically in rodents, the substrate can spread throughout the body, including the brain, achieving powerful molecular neuromodulation with convenience even in awake and behaving animals. In this chapter, we provide a practical guide for BL-OG and LMO applications in rodent models of the nervous system, both ex vivo and in vivo.


Assuntos
Medições Luminescentes , Optogenética , Animais , Encéfalo/metabolismo , Luciferases/genética , Luciferases/metabolismo , Roedores/metabolismo
7.
Neurobiol Dis ; 154: 105344, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33766652

RESUMO

INTRODUCTION: A variety of transgenic and knock-in mice that express mutant alleles of Amyloid precursor protein (APP) have been used to model the effects of amyloid-beta (Aß) on circuit function in Alzheimer's disease (AD); however phenotypes described in these mice may be affected by expression of mutant APP or proteolytic cleavage products independent of Aß. In addition, the effects of mutant APP expression are attributed to elevated expression of the amyloidogenic, 42-amino acid-long species of Aß (Aß42) associated with amyloid plaque accumulation in AD, though elevated concentrations of Aß40, an Aß species produced with normal synaptic activity, may also affect neural function. METHODS: To explore the effects of elevated expression of Aß on synaptic function in vivo, we assessed visual system plasticity in transgenic mice that express and secrete Aß throughout the brain in the absence of APP overexpression. Transgenic mice that express either Aß40 or Aß42 were assayed for their ability to appropriately demonstrate ocular dominance plasticity following monocular deprivation. RESULTS: Using two complementary approaches to measure the plastic response to monocular deprivation, we find that male and female mice that express either 40- or 42-amino acid-long Aß species demonstrate a plasticity defect comparable to that elicited in transgenic mice that express mutant alleles of APP and Presenilin 1 (APP/PS1 mice). CONCLUSIONS: These data support the hypothesis that mutant APP-driven plasticity impairment in mouse models of AD is mediated by production and accumulation of Aß. Moreover, these findings suggest that soluble species of Aß are capable of modulating synaptic plasticity, likely independent of any aggregation. These findings may have implications for the role of soluble species of Aß in both development and disease settings.


Assuntos
Peptídeos beta-Amiloides/biossíntese , Dominância Ocular/fisiologia , Plasticidade Neuronal/fisiologia , Fragmentos de Peptídeos/biossíntese , Córtex Visual/metabolismo , Peptídeos beta-Amiloides/genética , Animais , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Fragmentos de Peptídeos/genética
8.
Adv Exp Med Biol ; 1293: 281-293, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33398820

RESUMO

In this chapter, we introduce a relatively new, emerging method for molecular neuromodulation-bioluminescence-optogenetics. Bioluminescence-optogenetics is mediated by luminopsin fusion proteins-light-sensing opsins fused to light-emitting luciferases. We describe their structures and working mechanisms and discuss their unique benefits over conventional optogenetics and chemogenetics. We also summarize applications of bioluminescence-optogenetics in various neurological disease models in rodents.


Assuntos
Medições Luminescentes/métodos , Optogenética/métodos , Luciferases/genética , Medições Luminescentes/tendências , Optogenética/tendências
9.
World Neurosurg ; 144: e750-e765, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32949803

RESUMO

BACKGROUND: Although deep brain stimulation (DBS) of the subthalamic nucleus (STN) or globus pallidus internus (GPi) is the surgical method of choice to treat the canonical symptoms of Parkinson disease, occasionally surgical sites become infected or the hardware erodes, necessitating explantation. Usual practice is to remove and reimplant replacement leads after tissue healing, leaving patients without the clinical benefits of DBS for several months, and at risk for DBS withdrawal in some, and some patients are no longer good surgical candidates for reimplantation. Radiofrequency ablation through the DBS lead is an option for these patients. METHODS: We performed a retrospective chart review of all patients who underwent radiofrequency ablation of the STN or GPi through indwelling DBS leads performed before hardware removal at our institution. We generated patient-specific anatomic models to determine lesion locations and volumes. RESULTS: Six patients underwent radiofrequency ablation of the STN (n = 4) and GPi (n = 2) through indwelling DBS leads. All 6 of these patients initially showed comparable motor symptom relief to that experienced with DBS before lesioning, with 4 patients sustaining meaningful long-term (≥2 years) improvement. Better outcomes were achieved in those patients with a higher percentage of the planned target lesioned. CONCLUSIONS: Radiofrequency ablation through indwelling DBS leads before explantation could be considered a viable alternative to subsequent reimplantation or stereotactic lesion in patients with Parkinson disease in whom hardware explantation is necessary, if the patient achieved substantive symptom relief with DBS. This approach avoids symptom exacerbation while awaiting revision surgery.


Assuntos
Estimulação Encefálica Profunda , Procedimentos Neurocirúrgicos/métodos , Doença de Parkinson/cirurgia , Ablação por Radiofrequência/métodos , Idoso , Encéfalo/diagnóstico por imagem , Feminino , Globo Pálido/cirurgia , Humanos , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/diagnóstico por imagem , Estudos Retrospectivos , Núcleo Subtalâmico/cirurgia , Resultado do Tratamento
11.
Anesthesiology ; 132(5): 1003-1016, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32108685

RESUMO

BACKGROUND: Preexisting factors such as age and cognitive performance can influence the electroencephalogram (EEG) during general anesthesia. Specifically, spectral EEG power is lower in elderly, compared to younger, subjects. Here, the authors investigate age-related changes in EEG architecture in patients undergoing general anesthesia through a detailed examination of spectral and entropic measures. METHODS: The authors retrospectively studied 180 frontal EEG recordings from patients undergoing general anesthesia, induced with propofol/fentanyl and maintained by sevoflurane at the Waikato Hospital in Hamilton, New Zealand. The authors calculated power spectral density and normalized power spectral density, the entropic measures approximate and permutation entropy, as well as the beta ratio and spectral entropy as exemplary parameters used in current monitoring systems from segments of EEG obtained before the onset of surgery (i.e., with no noxious stimulation). RESULTS: The oldest quartile of patients had significantly lower 1/f characteristics (P < 0.001; area under the receiver operating characteristics curve, 0.84 [0.76 0.92]), indicative of a more uniform distribution of spectral power. Analysis of the normalized power spectral density revealed no significant impact of age on relative alpha (P = 0.693; area under the receiver operating characteristics curve, 0.52 [0.41 0.63]) and a significant but weak effect on relative beta power (P = 0.041; area under the receiver operating characteristics curve, 0.62 [0.52 0.73]). Using entropic parameters, the authors found a significant age-related change toward a more irregular and unpredictable EEG (permutation entropy: P < 0.001, area under the receiver operating characteristics curve, 0.81 [0.71 0.90]; approximate entropy: P < 0.001; area under the receiver operating characteristics curve, 0.76 [0.66 0.85]). With approximate entropy, the authors could also detect an age-induced change in alpha-band activity (P = 0.002; area under the receiver operating characteristics curve, 0.69 [0.60 78]). CONCLUSIONS: Like the sleep literature, spectral and entropic EEG features under general anesthesia change with age revealing a shift toward a faster, more irregular, oscillatory composition of the EEG in older patients. Age-related changes in neurophysiological activity may underlie these findings however the contribution of age-related changes in filtering properties or the signal to noise ratio must also be considered. Regardless, most current EEG technology used to guide anesthetic management focus on spectral features, and improvements to these devices might involve integration of entropic features of the raw EEG.


Assuntos
Envelhecimento/efeitos dos fármacos , Anestesia Geral/métodos , Anestésicos Inalatórios/administração & dosagem , Eletroencefalografia/efeitos dos fármacos , Entropia , Sevoflurano/administração & dosagem , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/fisiologia , Eletroencefalografia/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Distribuição Aleatória , Estudos Retrospectivos , Adulto Jovem
12.
Epilepsia ; 60(2): 220-232, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30653657

RESUMO

OBJECTIVE: Magnetic resonance (MR) thermography-guided laser interstitial thermal therapy, or stereotactic laser ablation (SLA), is a minimally invasive alternative to open surgery for focal epilepsy caused by cerebral cavernous malformations (CCMs). We examined the safety and effectiveness of SLA of epileptogenic CCMs. METHODS: We retrospectively analyzed 19 consecutive patients who presented with focal seizures associated with a CCM. Each patient underwent SLA of the CCM and adjacent cortex followed by standard clinical and imaging follow-up. RESULTS: All but one patient had chronic medically refractory epilepsy (median duration 8 years, range 0.5-52 years). Lesions were located in the temporal (13), frontal (five), and parietal (one) lobes. CCMs induced magnetic susceptibility artifacts during thermometry, but perilesional cortex was easily visualized. Fourteen of 17 patients (82%) with >12 months of follow-up achieved Engel class I outcomes, of which 10 (59%) were Engel class IA. Two patients who were not seizure-free from SLA alone became so following intracranial electrode-guided open resection. Delayed postsurgical imaging validated CCM involution (median 83% volume reduction) and ablation of surrounding cortex. Histopathologic examination of one previously ablated CCM following open surgery confirmed obliteration. SLA caused no detectable hemorrhages. Two symptomatic neurologic deficits (visual and motor) were predictable, and neither was permanently disabling. SIGNIFICANCE: In a consecutive retrospective series, MR thermography-guided SLA was an effective alternative to open surgery for epileptogenic CCM. The approach was free of hemorrhagic complications, and clinically significant neurologic deficits were predictable. SLA presents no barrier to subsequent open surgery when needed.


Assuntos
Epilepsia Resistente a Medicamentos/cirurgia , Epilepsia do Lobo Temporal/cirurgia , Hemangioma Cavernoso do Sistema Nervoso Central/cirurgia , Convulsões/cirurgia , Adolescente , Adulto , Idoso , Eletroencefalografia/métodos , Feminino , Hemangioma Cavernoso do Sistema Nervoso Central/complicações , Humanos , Terapia a Laser/efeitos adversos , Terapia a Laser/métodos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Convulsões/complicações , Técnicas Estereotáxicas/efeitos adversos , Resultado do Tratamento , Adulto Jovem
14.
Ann Neurol ; 83(3): 575-587, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29420840

RESUMO

OBJECTIVE: To evaluate the outcomes 1 year and longer following stereotactic laser amygdalohippocampotomy for mesial temporal lobe epilepsy in a large series of patients treated over a 5-year period since introduction of this novel technique. METHODS: Surgical outcomes of a consecutive series of 58 patients with mesial temporal lobe epilepsy who underwent the surgery at our institution with at least 12 months of follow-up were retrospectively evaluated. A subgroup analysis was performed comparing patients with and without mesial temporal sclerosis. RESULTS: One year following stereotactic laser amygdalohippocampotomy, 53.4% (95% confidence interval [CI] = 40.8-65.7%) of all patients were free of disabling seizures (Engel I). Three of 9 patients became seizure-free following repeat ablation. Subgroup analysis showed that 60.5% (95% CI = 45.6-73.7%) of patients with mesial temporal sclerosis were free of disabling seizures as compared to 33.3% (95% CI = 15.0-58.5%) of patients without mesial temporal sclerosis. Quality of Life in Epilepsy-31 scores significantly improved at the group level, few procedure-related complications were observed, and verbal memory outcome was better than historical open resection data. INTERPRETATION: In an unselected consecutive series of patients, stereotactic laser amygdalohippocampotomy yielded seizure-free rates for patients with mesial temporal lobe epilepsy lower than, but comparable to, the outcomes typically associated with open temporal lobe surgery. Analogous to results from open surgery, patients without mesial temporal sclerosis fared less well. This novel procedure is an effective minimally invasive alternative to resective surgery. In the minority of patients not free of disabling seizures, laser ablation presents no barrier to additional open surgery. Ann Neurol 2018;83:575-587.


Assuntos
Epilepsia do Lobo Temporal/patologia , Hipocampo/patologia , Convulsões/patologia , Lobo Temporal/patologia , Adulto , Idoso , Tonsila do Cerebelo/patologia , Epilepsia do Lobo Temporal/diagnóstico , Feminino , Humanos , Imageamento Tridimensional/métodos , Masculino , Memória/fisiologia , Pessoa de Meia-Idade , Convulsões/diagnóstico , Técnicas Estereotáxicas , Resultado do Tratamento , Adulto Jovem
15.
J Neurosci ; 37(41): 9880-9888, 2017 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-28899917

RESUMO

Activity-dependent synaptic plasticity plays a critical role in the refinement of circuitry during postnatal development and may be disrupted in conditions that cause intellectual disability, such as Down syndrome (DS). To test this hypothesis, visual cortical plasticity was assessed in Ts65Dn mice that harbor a chromosomal duplication syntenic to human chromosome 21q. We find that Ts65Dn mice demonstrate a defect in ocular dominance plasticity (ODP) following monocular deprivation. This phenotype is similar to that of transgenic mice that express amyloid precursor protein (APP), which is duplicated in DS and in Ts65DN mice; however, normalizing APP gene copy number in Ts65Dn mice fails to rescue plasticity. Ts1Rhr mice harbor a duplication of the telomeric third of the Ts65Dn-duplicated sequence and demonstrate the same ODP defect, suggesting a gene or genes sufficient to drive the phenotype are located in that smaller duplication. In addition, we find that Ts65Dn mice demonstrate an abnormality in olfactory system connectivity, a defect in the refinement of connections to second-order neurons in the olfactory bulb. Ts1Rhr mice do not demonstrate a defect in glomerular refinement, suggesting that distinct genes or sets of genes underlie visual and olfactory system phenotypes. Importantly, these data suggest that developmental plasticity and connectivity are impaired in sensory systems in DS model mice, that such defects may contribute to functional impairment in DS, and that these phenotypes, present in male and female mice, provide novel means for examining the genetic and molecular bases for neurodevelopmental impairment in model mice in vivoSIGNIFICANCE STATEMENT Our understanding of the basis for intellectual impairment in Down syndrome is hindered by the large number of genes duplicated in Trisomy 21 and a lack of understanding of the effect of disease pathology on the function of neural circuits in vivo This work describes early postnatal developmental abnormalities in visual and olfactory sensory systems in Down syndrome model mice, which provide insight into defects in the function of neural circuits in vivo and provide an approach for exploring the genetic and molecular basis for impairment in the disease. In addition, these findings raise the possibility that basic dysfunction in primary sensory circuitry may illustrate mechanisms important for global learning and cognitive impairment in Down syndrome patients.


Assuntos
Síndrome de Down/fisiopatologia , Condutos Olfatórios/fisiopatologia , Olfato , Visão Ocular , Vias Visuais/fisiopatologia , Animais , Cegueira/fisiopatologia , Proteínas do Citoesqueleto/genética , Dominância Ocular , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/genética , Plasticidade Neuronal , Córtex Visual/fisiopatologia
16.
Soc Neurosci ; 5(2): 163-70, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-19844845

RESUMO

It has been recently demonstrated that pain behavior in the mouse can be modulated by the presence of a conspecific, but what remains unclear is whether such pain behavior can serve the function of soliciting social approach. Using a novel social approach paradigm, we tested mice in various dyadic or triadic conditions, including "jailed" mice-some in pain via intraperitoneal injection of 0.9% acetic acid-and test mice free to approach or avoid the jailed mice. We observed a sex-specific effect whereby female, but not male, test mice approached a familiar same-sex conspecific in pain more frequently than an unaffected familiar or unfamiliar, but affected, conspecific. Despite a substantial literature emphasizing oxytocin's role in affiliative and pair-bonding behavior, this effect was also observed in female mice lacking the oxytocin receptor, suggesting that pain-related social approach may not be mediated by oxytocin. Furthermore, we found that the frequency of contact by the test mouse was negatively correlated with the pain behavior of the jailed mouse, suggesting that proximity of a familiar unaffected conspecific may have analgesic properties.


Assuntos
Dor/fisiopatologia , Dor/psicologia , Comportamento Social , Percepção Social , Ácido Acético/efeitos adversos , Análise de Variância , Animais , Constrição , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Dor/induzido quimicamente , Receptores de Ocitocina/deficiência , Fatores Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...