Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomater Appl ; 36(10): 1748-1757, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34472404

RESUMO

It is now generally accepted that 2D cultures cannot accurately replicate the rich environment and complex tissue architecture that exists in vivo, and that classically cultured cells tend to lose their original function. Growth of spheroids as opposed to 2D cultures on plastic has now been hailed as an efficient method to produce quantities of high-quality cells for cancer research, drug discovery, neuroscience, and regenerative medicine. We have developed a new recombinant protein that mimics dragline spidersilk and that self-assembles into cell-sized coils. These have high thermal and shelf-life stability and can be readily sterilized and stored for an extended period of time. The fibers are flexible, elastic, and biocompatible and can serve as cell-sized scaffold for the formation of 3D cell spheroids. As a proof of concept, recombinant spidersilk was integrated as a scaffold in spheroids of three cell types: primary rat hepatocytes, human mesenchymal stem cells, and mouse L929 cells. The scaffolds significantly reduced spheroid shrinkage and unlike scaffold-free spheroids, spheroids did not disintegrate over the course of long-term culture. Cells in recombinant spidersilk spheroids showed increased viability, and the cell lines continued to proliferate for longer than control cultures without spidersilk. The spidersilk also supported biological functions. Recombinant spidersilk primary hepatocyte spheroids exhibited 2.7-fold higher levels of adenosine triphosphate (ATP) continued to express and secrete albumin and exhibited significantly higher basal and induced CYP3A activity for at least 6 weeks in culture, while control spheroids without fibers stopped producing albumin after 27 days and CPY3A activity was barely detectable after 44 days. These results indicate that recombinant spidersilk can serve as a useful tool for long-term cell culture of 3D cell spheroids and specifically that primary hepatocytes can remain active in culture for an extended period of time which could be of great use in toxicology testing.


Assuntos
Técnicas de Cultura de Células em Três Dimensões , Seda , Animais , Técnicas de Cultura de Células/métodos , Hepatócitos , Camundongos , Ratos , Seda/metabolismo , Esferoides Celulares
2.
J Biol Eng ; 14: 18, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32617119

RESUMO

BACKGROUND: Implantation failure remains an unsolved obstacle in reproductive medicine. Previous studies have indicated that estrogen responsiveness, specifically by estrogen receptor alpha (ERα), is crucial for proper implantation. There is an utmost need for a reliable in vitro model that mimics the events in the uterine wall during the implantation process for studying the regulatory mechanisms governing the process. The current two-dimensional and hydrogel-based in vitro models provide only short-term endometrial cell culture with partial functionality. RESULTS: Endometrial biopsies showed an increase in E-cadherin expression on the typical window of implantation of fertile women, compared to negligible expression in recurrent implantation failure (RIF) patients. These clinical results indicated E-cadherin as a marker for receptivity. Three-dimensional (3D) macroporous alginate scaffolds were the base for epithelial endometrial cell-seeding and long-term culture under hormone treatment that mimicked a typical menstrual cycle. The RL95-2 epithelial cell culture in macroporous scaffolds was viable for 3 weeks and showed increased E-cadherin levels in response to estrogen. Human choriocarcinoma (JAR) spheroids were used as embryo models, seeded onto cell constructs and successfully adhered to the RL95-2 cell culture. Moreover, a second model of HEC-1A with low ERα levels, showed lower E-cadherin expression and no JAR attachment. E-cadherin expression and JAR attachment were recovered in HEC-1A cells that were transfected with ERα plasmid. CONCLUSIONS: We present a novel model that enables culturing endometrial cells on a 3D matrix for 3 weeks under hormonal treatment. It confirmed the importance of ERα function and E-cadherin for proper implantation. This platform may serve to elucidate the regulatory mechanisms controlling the implantation process, and for screening and evaluating potential novel therapeutic strategies for RIF.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...