Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Development ; 149(15)2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35781329

RESUMO

Cell fate determination is a necessary and tightly regulated process for producing different cell types and structures during development. Cranial neural crest cells (CNCCs) are unique to vertebrate embryos and emerge from the neural plate borders into multiple cell lineages that differentiate into bone, cartilage, neurons and glial cells. We have previously reported that Irf6 genetically interacts with Twist1 during CNCC-derived tissue formation. Here, we have investigated the mechanistic role of Twist1 and Irf6 at early stages of craniofacial development. Our data indicate that TWIST1 is expressed in endocytic vesicles at the apical surface and interacts with ß/δ-catenins during neural tube closure, and Irf6 is involved in defining neural fold borders by restricting AP2α expression. Twist1 suppresses Irf6 and other epithelial genes in CNCCs during the epithelial-to-mesenchymal transition (EMT) process and cell migration. Conversely, a loss of Twist1 leads to a sustained expression of epithelial and cell adhesion markers in migratory CNCCs. Disruption of TWIST1 phosphorylation in vivo leads to epidermal blebbing, edema, neural tube defects and CNCC-derived structural abnormalities. Altogether, this study describes a previously uncharacterized function of mammalian Twist1 and Irf6 in the neural tube and CNCCs, and provides new target genes for Twist1 that are involved in cytoskeletal remodeling.


Assuntos
Crista Neural , Tubo Neural , Animais , Cateninas , Regulação da Expressão Gênica no Desenvolvimento , Mamíferos/genética , Crânio/metabolismo , delta Catenina
2.
Dev Biol ; 490: 1-12, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35760368

RESUMO

Cell growth and proliferation must be balanced during development to attain a final adult size with the appropriate proportions of internal organs to maximize fitness and reproduction. While multiple signaling pathways coordinate Drosophila development, it is unclear how multi-organ communication within and between tissues converge to regulate systemic growth. One such growth pathway, mediated by insulin-like peptides that bind to and activate the insulin receptor in multiple target tissues, is a primary mediator of organismal size. Here we uncover a signaling role for the NUAK serine/threonine kinase in muscle tissue that impinges upon insulin pathway activity to limit overall body size, including a reduction in the growth of individual organs. In skeletal muscle tissue, manipulation of NUAK or insulin pathway components influences sarcomere number concomitant with modulation of thin and thick filament lengths, possibly by modulating the localization of Lasp, a nebulin repeat protein known to set thin filament length. This mode of sarcomere remodeling does not occur in other mutants that also exhibit smaller muscles, suggesting that a sensing mechanism exists in muscle tissue to regulate sarcomere growth that is independent of tissue size control.


Assuntos
Insulinas , Sarcômeros , Citoesqueleto de Actina/metabolismo , Animais , Drosophila , Insulinas/metabolismo , Músculo Esquelético/metabolismo , Sarcômeros/metabolismo
3.
Hum Mol Genet ; 31(1): 18-31, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34302166

RESUMO

Patients with autosomal dominant SPECC1L variants show syndromic malformations, including hypertelorism, cleft palate and omphalocele. These SPECC1L variants largely cluster in the second coiled-coil domain (CCD2), which facilitates association with microtubules. To study SPECC1L function in mice, we first generated a null allele (Specc1lΔEx4) lacking the entire SPECC1L protein. Homozygous mutants for these truncations died perinatally without cleft palate or omphalocele. Given the clustering of human variants in CCD2, we hypothesized that targeted perturbation of CCD2 may be required. Indeed, homozygotes for in-frame deletions involving CCD2 (Specc1lΔCCD2) resulted in exencephaly, cleft palate and ventral body wall closure defects (omphalocele). Interestingly, exencephaly and cleft palate were never observed in the same embryo. Further examination revealed a narrower oral cavity in exencephalic embryos, which allowed palatal shelves to elevate and fuse despite their defect. In the cell, wild-type SPECC1L was evenly distributed throughout the cytoplasm and colocalized with both microtubules and filamentous actin. In contrast, mutant SPECC1L-ΔCCD2 protein showed abnormal perinuclear accumulation with diminished overlap with microtubules, indicating that SPECC1L used microtubule association for trafficking in the cell. The perinuclear accumulation in the mutant also resulted in abnormally increased actin and non-muscle myosin II bundles dislocated to the cell periphery. Disrupted actomyosin cytoskeletal organization in SPECC1L CCD2 mutants would affect cell alignment and coordinated movement during neural tube, palate and ventral body wall closure. Thus, we show that perturbation of CCD2 in the context of full SPECC1L protein affects tissue fusion dynamics, indicating that human SPECC1L CCD2 variants are gain-of-function.


Assuntos
Fissura Palatina , Mutação com Ganho de Função , Animais , Fissura Palatina/genética , Fissura Palatina/metabolismo , Camundongos , Microtúbulos/genética , Microtúbulos/metabolismo , Palato , Fenótipo , Fosfoproteínas/genética
4.
PLoS Genet ; 16(4): e1008700, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32320396

RESUMO

The inability to remove protein aggregates in post-mitotic cells such as muscles or neurons is a cellular hallmark of aging cells and is a key factor in the initiation and progression of protein misfolding diseases. While protein aggregate disorders share common features, the molecular level events that culminate in abnormal protein accumulation cannot be explained by a single mechanism. Here we show that loss of the serine/threonine kinase NUAK causes cellular degeneration resulting from the incomplete clearance of protein aggregates in Drosophila larval muscles. In NUAK mutant muscles, regions that lack the myofibrillar proteins F-actin and Myosin heavy chain (MHC) instead contain damaged organelles and the accumulation of select proteins, including Filamin (Fil) and CryAB. NUAK biochemically and genetically interacts with Drosophila Starvin (Stv), the ortholog of mammalian Bcl-2-associated athanogene 3 (BAG3). Consistent with a known role for the co-chaperone BAG3 and the Heat shock cognate 71 kDa (HSC70)/HSPA8 ATPase in the autophagic clearance of proteins, RNA interference (RNAi) of Drosophila Stv, Hsc70-4, or autophagy-related 8a (Atg8a) all exhibit muscle degeneration and muscle contraction defects that phenocopy NUAK mutants. We further demonstrate that Fil is a target of NUAK kinase activity and abnormally accumulates upon loss of the BAG3-Hsc70-4 complex. In addition, Ubiquitin (Ub), ref(2)p/p62, and Atg8a are increased in regions of protein aggregation, consistent with a block in autophagy upon loss of NUAK. Collectively, our results establish a novel role for NUAK with the Stv-Hsc70-4 complex in the autophagic clearance of proteins that may eventually lead to treatment options for protein aggregate diseases.


Assuntos
Autofagia , Proteínas de Drosophila/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Actinas/metabolismo , Animais , Drosophila , Proteínas de Drosophila/genética , Filaminas/metabolismo , Proteínas de Choque Térmico HSC70/metabolismo , Músculo Esquelético/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , Cadeia B de alfa-Cristalina/metabolismo
5.
Genetics ; 206(1): 199-213, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28249984

RESUMO

Adult muscle precursor (AMP) cells located in the notum of the larval wing disc undergo rapid amplification and eventual fusion to generate the Drosophila melanogaster indirect flight muscles (IFMs). Here we find that loss of Moleskin (Msk) function in these wing disc-associated myoblasts reduces the overall AMP pool size, resulting in the absence of IFM formation. This myoblast loss is due to a decrease in the AMP proliferative capacity and is independent of cell death. In contrast, disruption of Msk during pupal myoblast proliferation does not alter the AMP number, suggesting that Msk is specifically required for larval AMP proliferation. It has been previously shown that Wingless (Wg) signaling maintains expression of the Vestigial (Vg) transcription factor in proliferating myoblasts. However, other factors that influence Wg-mediated myoblast proliferation are largely unknown. Here we examine the interactions between Msk and the Wg pathway in regulation of the AMP pool size. We find that a myoblast-specific reduction of Msk results in the absence of Vg expression and a complete loss of the Wg pathway readout ß-catenin/Armadillo (Arm). Moreover, msk RNA interference knockdown abolishes expression of the Wg target Ladybird (Lbe) in leg disc myoblasts. Collectively, our results provide strong evidence that Msk acts through the Wg signaling pathway to control myoblast pool size and muscle formation by regulating Arm stability or nuclear transport.


Assuntos
Proteínas do Domínio Armadillo/genética , Proteínas de Drosophila/biossíntese , Proteínas de Drosophila/genética , Proteínas de Homeodomínio/genética , Proteínas Nucleares/biossíntese , Fatores de Transcrição/genética , Proteína Wnt1/biossíntese , Animais , Proliferação de Células/genética , Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Larva/genética , Larva/crescimento & desenvolvimento , Desenvolvimento Muscular/genética , Mioblastos/metabolismo , Proteínas Nucleares/genética , Transdução de Sinais , Asas de Animais/crescimento & desenvolvimento , Proteína Wnt1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA