Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1295994, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38116530

RESUMO

Diatoms (Bacillariophyceae) are aquatic photosynthetic microalgae with an ecological role as primary producers in the aquatic food web. They account substantially for global carbon, nitrogen, and silicon cycling. Elucidating the chemical space of diatoms is crucial to understanding their physiology and ecology. To expand the known chemical space of a cosmopolitan marine diatom, Skeletonema marinoi, we performed High-Resolution Liquid Chromatography-Tandem Mass Spectrometry (LC-MS2) for untargeted metabolomics data acquisition. The spectral data from LC-MS2 was used as input for the Metabolome Annotation Workflow (MAW) to obtain putative annotations for all measured features. A suspect list of metabolites previously identified in the Skeletonema spp. was generated to verify the results. These known metabolites were then added to the putative candidate list from LC-MS2 data to represent an expanded catalog of 1970 metabolites estimated to be produced by S. marinoi. The most prevalent chemical superclasses, based on the ChemONT ontology in this expanded dataset, were organic acids and derivatives, organoheterocyclic compounds, lipids and lipid-like molecules, and organic oxygen compounds. The metabolic profile from this study can aid the bioprospecting of marine microalgae for medicine, biofuel production, agriculture, and environmental conservation. The proposed analysis can be applicable for assessing the chemical space of other microalgae, which can also provide molecular insights into the interaction between marine organisms and their role in the functioning of ecosystems.

2.
Metabolites ; 14(1)2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38248813

RESUMO

Electron ionization (EI) and molecular ion-generating techniques like chemical ionization (CI) are complementary ionization methods in gas chromatography (GC)-mass spectrometry (MS). However, manual curation effort and expert knowledge are required to correctly assign molecular ions to fragment spectra. MSdeCIpher is a software tool that enables the combination of two separate datasets from fragment-rich spectra, like EI-spectra, and soft ionization spectra containing molecular ion candidates. Using high-resolution GC-MS data, it identifies and assigns molecular ions based on retention time matching, user-defined adduct/neutral loss criteria, and sum formula matching. To our knowledge, no other freely available or vendor tool is currently capable of combining fragment-rich and soft ionization datasets in this manner. The tool's performance was evaluated on three test datasets. When molecular ions are present, MSdeCIpher consistently ranks the correct molecular ion for each fragment spectrum in one of the top positions, with average ranks of 1.5, 1, and 1.2 in the three datasets, respectively. MSdeCIpher effectively reduces candidate molecular ions for each fragment spectrum and thus enables the usage of compound identification tools that require molecular masses as input. It paves the way towards rapid annotations in untargeted analysis with high-resolution GC-MS.

3.
Phytochemistry ; 201: 113267, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35671808

RESUMO

Microalgae are important primary producers and form the basis for the marine food web. As global climate changes, so do salinity levels that algae are exposed to. A metabolic response of algal cells partly alleviates the resulting osmotic stress. Some metabolites involved in the response are well studied, but the full metabolic implications of adaptation remain unclear. Improved analytical methodology provides an opportunity for additional insight. We can now follow responses to stress in major parts of the metabolome and derive comprehensive charts of the resulting metabolic re-wiring. In this study, we subjected three species of diatoms to high salinity conditions and compared their metabolome to controls in an untargeted manner. The three well-investigated species with sequenced genomes Phaeodactylum tricornutum, Thalassiosira pseudonana, and Skeletonema marinoi were selected for our survey. The microalgae react to salinity stress with common adaptations in the metabolome by amino acid up-regulation, production of saccharides, and inositols. But also species-specific dysregulation of metabolites is common. Several metabolites previously not connected with osmotic stress reactions are identified, including 4-hydroxyproline, pipecolinic acid, myo-inositol, threonic acid, and acylcarnitines. This expands our knowledge about osmoadaptation and calls for further functional characterization of metabolites and pathways in algal stress physiology.


Assuntos
Diatomáceas , Microalgas , Aclimatação , Diatomáceas/metabolismo , Metaboloma , Salinidade
4.
ISME J ; 14(11): 2675-2690, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32690937

RESUMO

Coexistence of microaerophilic Fe(II)-oxidizers and anaerobic Fe(III)-reducers in environments with fluctuating redox conditions is a prime example of mutualism, in which both partners benefit from the sustained Fe-pool. Consequently, the Fe-cycling machineries (i.e., metal-reducing or -oxidizing pathways) should be most affected during co-cultivation. However, contrasting growth requirements impeded systematic elucidation of their interactions. To disentangle underlying interaction mechanisms, we established a suboxic co-culture system of Sideroxydans sp. CL21 and Shewanella oneidensis. We showed that addition of the partner's cell-free supernatant enhanced both growth and Fe(II)-oxidizing or Fe(III)-reducing activity of each partner. Metabolites of the exometabolome of Sideroxydans sp. CL21 are generally upregulated if stimulated with the partner´s spent medium, while S. oneidensis exhibits a mixed metabolic response in accordance with a balanced response to the partner. Surprisingly, RNA-seq analysis revealed genes involved in Fe-cycling were not differentially expressed during co-cultivation. Instead, the most differentially upregulated genes included those encoding for biopolymer production, lipoprotein transport, putrescine biosynthesis, and amino acid degradation suggesting a regulated inter-species biofilm formation. Furthermore, the upregulation of hydrogenases in Sideroxydans sp. CL21 points to competition for H2 as electron donor. Our findings reveal that a complex metabolic and transcriptomic response, but not accelerated formation of Fe-end products, drive interactions of Fe-cycling microorganisms.


Assuntos
Gallionellaceae , Shewanella , Compostos Ferrosos , Ferro , Oxirredução , Shewanella/genética
5.
Metabolites ; 10(4)2020 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-32260407

RESUMO

The development of improved mass spectrometers and supporting computational tools is expected to enable the rapid annotation of whole metabolomes. Essential for the progress is the identification of strengths and weaknesses of novel instrumentation in direct comparison to previous instruments. Orbitrap liquid chromatography (LC)-mass spectrometry (MS) technology is now widely in use, while Orbitrap gas chromatography (GC)-MS introduced in 2015 has remained fairly unexplored in its potential for metabolomics research. This study aims to evaluate the additional knowledge gained in a metabolomics experiment when using the high-resolution Orbitrap GC-MS in comparison to a commonly used unit-mass resolution single-quadrupole GC-MS. Samples from an osmotic stress treatment of a non-model organism, the microalga Skeletonema costatum, were investigated using comparative metabolomics with low- and high-resolution methods. Resulting datasets were compared on a statistical level and on the level of individual compound annotation. Both MS approaches resulted in successful classification of stressed vs. non-stressed microalgae but did so using different sets of significantly dysregulated metabolites. High-resolution data only slightly improved conventional library matching but enabled the correct annotation of an unknown. While computational support that utilizes high-resolution GC-MS data is still underdeveloped, clear benefits in terms of sensitivity, metabolic coverage, and support in structure elucidation of the Orbitrap GC-MS technology for metabolomics studies are shown here.

6.
J Chem Ecol ; 45(5-6): 534-535, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30825038

RESUMO

The original version of this article unfortunately contained a mistake. The chemical structure of compound 6 in Fig. 1 was incorrect. The tested compound 6 in this study was (3S,8aS)-3-isobutylhexahydropyrrolo[1,2-a]pyrazine-1,4-dione as shown in the corrected version of Fig. 1 here.

7.
J Chem Ecol ; 44(4): 354-363, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29536294

RESUMO

Recently the first pheromone of a marine diatom was identified to be the diketopiperazine (S,S)-diproline. This compound facilitates attraction between mating partners in the benthic diatom Seminavis robusta. Interestingly, sexualized S. robusta cells are attracted to both the natural pheromone (S,S)-diproline as well as to its enantiomer (R,R)-diproline. Usually stereospecificity is a prerequisite for successful substrate-receptor interactions, and especially pheromone perception is often highly enantioselective. Here we introduce a structure-activity relationship study, to learn more about the principles of pheromone reception in diatoms. We analyzed the activity of nine different diketopiperazines in attraction and interference assays. The pheromone diproline itself, as well as a pipecolic acid derived diketopiperazine with two expanded aliphatic ring systems, showed the highest attractivity. Hydroxylatoin of the aliphatic rings abolished any bioactivity. Diketopiperazines derived from acyclic amino acids were not attrative as well. All stereoisomers of both the diproline and the pipecolic acid derived diketopiperazine were purified by enantioselective high-performance liquid chromatography, and application in bioactivity tests confirmed that attraction pheromone perception in this diatom is indeed not stereospecific. However, the lack of activity of diketopiperazines derived from acyclic amino acids suggests a specificity that prevents misguidance to sources of other naturally occurring diketopiperazines.


Assuntos
Diatomáceas/química , Feromônios/química , Cromatografia Líquida de Alta Pressão , Diatomáceas/metabolismo , Dicetopiperazinas/química , Dimerização , Espectrometria de Massas , Prolina/química , Estereoisomerismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...