Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Insect Physiol ; 65: 9-26, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24768842

RESUMO

Desert Locusts can change reversibly between solitarious and gregarious phases, which differ considerably in behaviour, morphology and physiology. The two phases show many behavioural differences including both overall levels of activity and the degree to which they are attracted or repulsed by conspecifics. Solitarious locusts perform infrequent bouts of locomotion characterised by a slow walking pace, groom infrequently and actively avoid other locusts. Gregarious locusts are highly active with a rapid walking pace, groom frequently and are attracted to conspecifics forming cohesive migratory bands as nymphs and/or flying swarms as adults. The sole factor driving the onset of gregarization is the presence of conspecifics. In several previous studies concerned with the mechanism underlying this transformation we have used an aggregate measure of behavioural phase state, Pgreg, derived from logistic regression analysis, which combines and weights several behavioural variables to characterise solitarious and gregarious behaviour. Using this approach we have analysed the time course of behavioural change, the stimuli that induce gregarization and the key role of serotonin in mediating the transformation. Following a recent critique that suggested that using Pgreg may confound changes in general activity with genuine gregarization we have performed a meta-analysis examining the time course of change in the individual behaviours that we use to generate Pgreg. We show that the forced crowding of solitarious locusts, tactile stimulation of the hind femora, and the short-term application of serotonin each induce concerted changes in not only locomotion-related variables but also grooming frequency and attraction to other locusts towards those characteristic of long-term gregarious locusts. This extensive meta-analysis supports and extends our previous conclusions that solitarious locusts undergo a rapid behavioural gregarization upon receiving appropriate stimulation for a few hours that is mediated by serotonin, at the end of which their behaviour is largely indistinguishable from locusts that have been in the gregarious phase their entire lives.


Assuntos
Comportamento Animal/fisiologia , Gafanhotos/fisiologia , Serotonina/metabolismo , Comportamento Social , Animais , Aglomeração , Asseio Animal/fisiologia , Locomoção/fisiologia , Tato/fisiologia
2.
PLoS One ; 6(8): e21354, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21857906

RESUMO

The honeybee dance "language" is one of the most popular examples of information transfer in the animal world. Today, more than 60 years after its discovery it still remains unknown how follower bees decode the information contained in the dance. In order to build a robotic honeybee that allows a deeper investigation of the communication process we have recorded hundreds of videos of waggle dances. In this paper we analyze the statistics of visually captured high-precision dance trajectories of European honeybees (Apis mellifera carnica). The trajectories were produced using a novel automatic tracking system and represent the most detailed honeybee dance motion information available. Although honeybee dances seem very variable, some properties turned out to be invariant. We use these properties as a minimal set of parameters that enables us to model the honeybee dance motion. We provide a detailed statistical description of various dance properties that have not been characterized before and discuss the role of particular dance components in the commmunication process.


Assuntos
Comunicação Animal , Abelhas/fisiologia , Modelos Biológicos , Atividade Motora/fisiologia , Algoritmos , Animais , Simulação por Computador , Movimento (Física)
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA