Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
iScience ; 27(3): 109239, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38433923

RESUMO

Amyloid-ß (Aß) oligomers consist of fibrillar and non-fibrillar soluble assemblies of the Aß peptide. Aß∗56 is a non-fibrillar Aß assembly that is linked to memory deficits. Previous studies did not decipher specific forms of Aß present in Aß∗56. Here, we confirmed the memory-impairing characteristics of Aß∗56 and extended its biochemical characterization. We used anti-Aß(1-x), anti-Aß(x-40), anti-Aß(x-42), and A11 anti-oligomer antibodies in conjunction with western blotting, immunoaffinity purification, and size-exclusion chromatography to probe aqueous brain extracts from Tg2576, 5xFAD, and APP/TTA mice. In Tg2576, Aß∗56 is a ∼56-kDa, SDS-stable, A11-reactive, non-plaque-dependent, water-soluble, brain-derived oligomer containing canonical Aß(1-40). In 5xFAD, Aß∗56 is composed of Aß(1-42), whereas in APP/TTA, it contains both Aß(1-40) and Aß(1-42). When injected into the hippocampus of wild-type mice, Aß∗56 derived from Tg2576 mice impairs memory. The unusual stability of this oligomer renders it an attractive candidate for studying relationships between molecular structure and effects on brain function.

2.
J Neurosci ; 42(23): 4737-4754, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35508385

RESUMO

Studies have recently demonstrated that a caspase-2-mediated cleavage of human tau (htau) at asparate-314 (D314) is responsible for cognitive deficits and neurodegeneration in mice modeling frontotemporal dementia (FTD). However, these animal studies may be confounded by flaws in their model systems, such as endogenous functional gene disruption and inequivalent transgene expression. To avoid these weaknesses, we examined the pathogenic role of this site-specific htau cleavage in FTD using genetically matched htau targeted-insertion mouse lines: rT2 and rT3. Both male and female mice were included in this study. rT2 mice contain a single copy of the FTD-linked htau proline-to-leucine mutation at amino acid 301 (htau P301L), inserted into a neutral site to avoid dysregulation of host gene expression. The similarly constructed rT3 mice harbor an additional D314-to-glutamate (D314E) mutation that blocks htau cleavage. We demonstrate that htau transgene expression occurs primarily in the forebrain at similar levels in rT2 and rT3 mice. Importantly, expression of the cleavage-resistant D314E mutant delays transgene-induced tau accumulation in the postsynaptic density, brain atrophy, hippocampal neurodegeneration, and spatial memory impairment, without altering age-related progression of pathologic tau conformation and phosphorylation. Our comprehensive investigation of age-dependent disease phenotypes associated with the htau P301L variant in precisely engineered FTD-modeling mice unveils a transiently protective effect of blocking htau cleavage at D314. Findings of this study advance our understanding of the contribution of this tau cleavage to the pathogenesis of FTD, and aid the development of effective dementia-targeting therapies.SIGNIFICANCE STATEMENT A site-specific and caspase-2-mediated cleavage of human tau plays a pathologic role in dementia. In this study, we investigate the contribution of this cleavage to the pathogenesis of frontotemporal dementia (FTD) using two genetically matched, tau-transgene targeted-insertion mouse lines that differ only by a cleavage-resistant mutation. The use of these mice avoids confounding effects associated with the random integration of tau transgenes to the mouse genome and allows us to comprehensively evaluate the impact of the tau cleavage on FTD phenotypes. Our data reveal that blocking this tau cleavage delays memory impairment and neurodegeneration of FTD-modeling mice. These findings improve our understanding of the pathogenic mechanisms underlying FTD and will facilitate the development of effective therapeutics.


Assuntos
Demência Frontotemporal , Animais , Caspase 2/genética , Modelos Animais de Doenças , Feminino , Demência Frontotemporal/genética , Humanos , Masculino , Transtornos da Memória , Camundongos , Camundongos Transgênicos , Fenótipo , Proteínas tau/genética , Proteínas tau/metabolismo
3.
Magn Reson Med ; 86(3): 1544-1559, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33821502

RESUMO

PURPOSE: The primary goal of this study was to investigate whether chronic exposures to ultra-high B0 fields can induce long-term cognitive, behavioral, or biological changes in C57BL/6 mice. METHODS: C57BL/6 mice were chronically exposed to 10.5-T or 16.4-T magnetic fields (3-h exposures, two exposure sessions per week, 4 or 8 weeks of exposure). In vivo single-voxel 1 H magnetic resonance spectroscopy was used to investigate possible neurochemical changes in the hippocampus. In addition, a battery of behavioral tests, including the Morris water-maze, balance-beam, rotarod, and fear-conditioning tests, were used to examine long-term changes induced by B0 exposures. RESULTS: Hippocampal neurochemical profile, cognitive, and basic motor functions were not impaired by chronic magnetic field exposures. However, the balance-beam-walking test and the Morris water-maze testing revealed B0 -induced changes in motor coordination and balance. The tight-circling locomotor behavior during Morris water-maze tests was found as the most sensitive factor indexing B0 -induced changes. Long-term behavioral changes were observed days or even weeks subsequent to the last B0 exposure at 16.4 T but not at 10.5 T. Fast motion of mice in and out of the 16.4-T magnet was not sufficient to induce such changes. CONCLUSION: Observed results suggest that the chronic exposure to a magnetic field as high as 16.4 T may result in long-term impairment of the vestibular system in mice. Although observation of mice may not directly translate to humans, nevertheless, they indicate that studies focused on human safety at very high magnetic fields are necessary.


Assuntos
Condicionamento Psicológico , Atividade Motora , Animais , Comportamento Animal , Campos Magnéticos , Camundongos , Camundongos Endogâmicos C57BL
4.
J Neurosci ; 40(1): 220-236, 2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31685653

RESUMO

Tau is a microtubule-associated protein that becomes dysregulated in a group of neurodegenerative diseases called tauopathies. Differential tau isoforms, expression levels, promoters, and disruption of endogenous genes in transgenic mouse models of tauopathy make it difficult to draw definitive conclusions about the biological role of tau in these models. We addressed this shortcoming by characterizing the molecular and cognitive phenotypes associated with the pathogenic P301L tau mutation (rT2 mice) in relation to a genetically matched transgenic mouse overexpressing nonmutant (NM) 4-repeat (4R) human tau (rT1 mice). Both male and female mice were included in this study. Unexpectedly, we found that 4R NM human tau (hTau) exhibited abnormal dynamics in young mice that were lost with the P301L mutation, including elevated protein stability and hyperphosphorylation, which were associated with cognitive impairment in 5-month-old rT1 mice. Hyperphosphorylation of NM hTau was observed as early as 4 weeks of age, and transgene suppression for the first 4 or 12 weeks of life prevented abnormal molecular and cognitive phenotypes in rT1, demonstrating that NM hTau pathogenicity is specific to postnatal development. We also show that NM hTau exhibits stronger binding to microtubules than P301L hTau, and is associated with mitochondrial abnormalities. Overall, our genetically matched mice have revealed that 4R NM hTau overexpression is pathogenic in a manner distinct from classical aging-related tauopathy, underlining the importance of assaying the effects of transgenic disease-related proteins at appropriate stages in life.SIGNIFICANCE STATEMENT Due to differences in creation of transgenic lines, the pathological properties of the P301L mutation confers to the tau protein in vivo have remained elusive, perhaps contributing to the lack of disease-modifying therapies for tauopathies. In an attempt to characterize P301L-specific effects on tau biology and cognition in novel genetically matched transgenic mouse models, we surprisingly found that nonmutant human tau has development-specific pathogenic properties of its own. Our findings indicate that overexpression of 4-repeat human tau during postnatal development is associated with excessive microtubule binding, which may disrupt important cellular processes, such as mitochondrial dynamics, leading to elevated stability and hyperphosphorylation of tau, and eventual cognitive impairments.


Assuntos
Transtornos da Memória/genética , Doenças Mitocondriais/genética , Proteínas tau/genética , Animais , Células Cultivadas , Feminino , Genes Sintéticos , Hipocampo/citologia , Humanos , Mutação INDEL , Masculino , Aprendizagem em Labirinto , Transtornos da Memória/fisiopatologia , Camundongos , Camundongos Transgênicos , Microtúbulos/fisiologia , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Doenças Mitocondriais/fisiopatologia , Mutação de Sentido Incorreto , Estresse Oxidativo , Fenótipo , Fosforilação , Mutação Puntual , Prosencéfalo/fisiologia , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes , Sequências Repetitivas de Aminoácidos , Especificidade da Espécie , Regulação para Cima , Proteínas tau/biossíntese
5.
Emotion ; 15(6): 687-93, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26147861

RESUMO

Rumination has been shown to increase negative affect and is highly associated with increased duration of depressive episodes. Previous research has shown that enhanced elaborative processing of negative stimuli is often associated with depression and trait rumination. We hypothesized that engaging in rumination would result in sustained elaborative processing of negative information, as measured by late positive potential (LPP) asymmetry, regardless of depression. Participants were experimentally induced to engage in ruminative- or distraction-oriented thoughts and subsequently viewed negative, positive, and neutral images. Our results showed a very specific right-dominant frontal and parietal LPP to negative, but not neutral or positive, pictures in the rumination condition only that was not correlated with any measures of trait rumination or depression symptoms. This suggests that state rumination alone may lead to an enhanced, sustained processing of negative material that is typically associated with depression. (PsycINFO Database Record


Assuntos
Afeto , Depressão/psicologia , Pensamento , Adolescente , Adulto , Feminino , Humanos , Masculino , Adulto Jovem
6.
J Neurotrauma ; 31(14): 1277-91, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24694002

RESUMO

Loss of olfactory function is an early indicator of traumatic brain injury (TBI). The regenerative capacity and well-defined neural maps of the mammalian olfactory system enable investigations into the degeneration and recovery of neural circuits after injury. Here, we introduce a unique olfactory-based model of TBI that reproduces many hallmarks associated with human brain trauma. We performed a unilateral penetrating impact to the mouse olfactory bulb and observed a significant loss of olfactory sensory neurons (OSNs) in the olfactory epithelium (OE) ipsilateral to the injury, but not contralateral. By comparison, we detected the injury markers p75(NTR), ß-APP, and activated caspase-3 in both the ipsi- and contralateral OE. In the olfactory bulb (OB), we observed a graded cell loss, with ipsilateral showing a greater reduction than contralateral and both significantly less than sham. Similar to OE, injury markers in the OB were primarily detected on the ipsilateral side, but also observed contralaterally. Behavioral experiments measured 4 days after impact also demonstrated loss of olfactory function, yet following a 30-day recovery period, we observed a significant improvement in olfactory function and partial recovery of olfactory circuitry, despite the persistence of TBI markers. Interestingly, by using the M71-IRES-tauLacZ reporter line to track OSN organization, we further determined that inducing neural activity during the recovery period with intense odor conditioning did not enhance the recovery process. Together, these data establish the mouse olfactory system as a new model to study TBI, serving as a platform to understand neural disruption and the potential for circuit restoration.


Assuntos
Lesões Encefálicas/patologia , Regeneração Nervosa/fisiologia , Bulbo Olfatório/lesões , Bulbo Olfatório/patologia , Animais , Modelos Animais de Doenças , Lateralidade Funcional , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos , Células Receptoras Sensoriais/patologia
7.
J Neurosci ; 33(30): 12208-17, 2013 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-23884929

RESUMO

Neural circuits maintain a precise organization that is vital for normal brain functions and behaviors, but become disrupted during neurological disease. Understanding the connection between wiring accuracy and function to measure disease progression or recovery has been difficult because of the complexity of behavioral circuits. The olfactory system maintains well-defined neural connections that regenerate throughout life. We previously established a reversible in vivo model of Alzheimer's disease by overexpressing a humanized mutated amyloid precursor protein (hAPP) in olfactory sensory neurons (OSNs). Using this model, we currently show that hAPP is present in the OSN axons of mutant mice, which exhibit strong caspase3 signal and reduced synaptic protein expression by 3 weeks of age. In the olfactory bulb, we show that glomerular structure is distorted and OSN axonal convergence is lost. In vivo functional imaging experiments further demonstrate disruption of the glomerular circuitry, and behavioral assays reveal that olfactory function is significantly impaired. Because OSNs regenerate, we also tested if the system could recover from hAPP-induced disruption. We found that after 1 or 3 weeks of shutting-off hAPP expression, the glomerular circuit was partially restored both anatomically and functionally, with behavioral deficits similarly reversed. Interestingly, the degree of functional recovery tracked directly with circuit restoration. Together, these data demonstrate that hAPP-induced circuit disruption and subsequent recovery can occur rapidly and that behavior can provide a measure of circuit organization. Thus, olfaction may serve as a useful biomarker to both follow disease progression and gauge potential recovery.


Assuntos
Agnosia/fisiopatologia , Doença de Alzheimer/fisiopatologia , Precursor de Proteína beta-Amiloide/genética , Comportamento Alimentar/fisiologia , Recuperação de Função Fisiológica/fisiologia , Olfato/fisiologia , Agnosia/genética , Agnosia/terapia , Doença de Alzheimer/genética , Doença de Alzheimer/terapia , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Axônios/patologia , Axônios/fisiologia , Caspase 3/metabolismo , Contagem de Células , Modelos Animais de Doenças , Progressão da Doença , Feminino , Alimentos , Terapia Genética/métodos , Humanos , Óperon Lac , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Degeneração Neural/genética , Degeneração Neural/patologia , Degeneração Neural/fisiopatologia , Odorantes , Bulbo Olfatório/patologia , Bulbo Olfatório/fisiologia , Olfato/genética
8.
Motiv Emot ; 36(3): 404-413, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30122793

RESUMO

Growing evidence suggests that the underlying geometry of a visual image is an effective mechanism for conveying the affective meaning of a scene or object. Indeed, even very simple context-free geometric shapes have been shown to signal emotion. Specifically, downward-pointing V's are perceived as threatening and curvilinear forms are perceived as pleasant. As these shapes are thought to be primitive cues for decoding emotion, we sought to assess whether they are evaluated as affective even without extended cognitive processing. Using an Implicit Association Test to examine associations between three shapes (downward- and upward-pointing triangles, circles) and pleasant, unpleasant, and neutral scenes, in two studies we found that participants were faster to categorize downward-pointing triangles as unpleasant compared to neutral or pleasant. These findings were specific to downward-pointing shapes containing an acute angle. The present findings support the hypothesis that simple geometric forms convey emotion and that this perception does not require explicit judgment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA